source: dev/trunk/ab5.0/abdev/ab_common/malloc.c@ 790

Last change on this file since 790 was 755, checked in by イグトランス (egtra), 16 years ago

malloc.cの置き場を間違えたので修正

File size: 175.8 KB
RevLine 
[751]1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441#ifndef WIN32
442#ifdef _WIN32
443#define WIN32 1
444#endif /* _WIN32 */
445#endif /* WIN32 */
446#ifdef WIN32
447#define WIN32_LEAN_AND_MEAN
448#include <windows.h>
449#define HAVE_MMAP 1
450#define HAVE_MORECORE 0
451#define LACKS_UNISTD_H
452#define LACKS_SYS_PARAM_H
453#define LACKS_SYS_MMAN_H
454#define LACKS_STRING_H
455#define LACKS_STRINGS_H
456#define LACKS_SYS_TYPES_H
457#define LACKS_ERRNO_H
458#define MALLOC_FAILURE_ACTION
459#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
460#endif /* WIN32 */
461
462#if defined(DARWIN) || defined(_DARWIN)
463/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
464#ifndef HAVE_MORECORE
465#define HAVE_MORECORE 0
466#define HAVE_MMAP 1
467#endif /* HAVE_MORECORE */
468#endif /* DARWIN */
469
470#ifndef LACKS_SYS_TYPES_H
471#include <sys/types.h> /* For size_t */
472#endif /* LACKS_SYS_TYPES_H */
473
474/* The maximum possible size_t value has all bits set */
475#define MAX_SIZE_T (~(size_t)0)
476
477#ifndef ONLY_MSPACES
478#define ONLY_MSPACES 0
479#endif /* ONLY_MSPACES */
480#ifndef MSPACES
481#if ONLY_MSPACES
482#define MSPACES 1
483#else /* ONLY_MSPACES */
484#define MSPACES 0
485#endif /* ONLY_MSPACES */
486#endif /* MSPACES */
487#ifndef MALLOC_ALIGNMENT
488#define MALLOC_ALIGNMENT ((size_t)8U)
489#endif /* MALLOC_ALIGNMENT */
490#ifndef FOOTERS
491#define FOOTERS 0
492#endif /* FOOTERS */
493#ifndef ABORT
494#define ABORT abort()
495#endif /* ABORT */
496#ifndef ABORT_ON_ASSERT_FAILURE
497#define ABORT_ON_ASSERT_FAILURE 1
498#endif /* ABORT_ON_ASSERT_FAILURE */
499#ifndef PROCEED_ON_ERROR
500#define PROCEED_ON_ERROR 0
501#endif /* PROCEED_ON_ERROR */
502#ifndef USE_LOCKS
503#define USE_LOCKS 0
504#endif /* USE_LOCKS */
505#ifndef INSECURE
506#define INSECURE 0
507#endif /* INSECURE */
508#ifndef HAVE_MMAP
509#define HAVE_MMAP 1
510#endif /* HAVE_MMAP */
511#ifndef MMAP_CLEARS
512#define MMAP_CLEARS 1
513#endif /* MMAP_CLEARS */
514#ifndef HAVE_MREMAP
515#ifdef linux
516#define HAVE_MREMAP 1
517#else /* linux */
518#define HAVE_MREMAP 0
519#endif /* linux */
520#endif /* HAVE_MREMAP */
521#ifndef MALLOC_FAILURE_ACTION
522#define MALLOC_FAILURE_ACTION errno = ENOMEM;
523#endif /* MALLOC_FAILURE_ACTION */
524#ifndef HAVE_MORECORE
525#if ONLY_MSPACES
526#define HAVE_MORECORE 0
527#else /* ONLY_MSPACES */
528#define HAVE_MORECORE 1
529#endif /* ONLY_MSPACES */
530#endif /* HAVE_MORECORE */
531#if !HAVE_MORECORE
532#define MORECORE_CONTIGUOUS 0
533#else /* !HAVE_MORECORE */
534#ifndef MORECORE
535#define MORECORE sbrk
536#endif /* MORECORE */
537#ifndef MORECORE_CONTIGUOUS
538#define MORECORE_CONTIGUOUS 1
539#endif /* MORECORE_CONTIGUOUS */
540#endif /* HAVE_MORECORE */
541#ifndef DEFAULT_GRANULARITY
542#if MORECORE_CONTIGUOUS
543#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
544#else /* MORECORE_CONTIGUOUS */
545#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
546#endif /* MORECORE_CONTIGUOUS */
547#endif /* DEFAULT_GRANULARITY */
548#ifndef DEFAULT_TRIM_THRESHOLD
549#ifndef MORECORE_CANNOT_TRIM
550#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
551#else /* MORECORE_CANNOT_TRIM */
552#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
553#endif /* MORECORE_CANNOT_TRIM */
554#endif /* DEFAULT_TRIM_THRESHOLD */
555#ifndef DEFAULT_MMAP_THRESHOLD
556#if HAVE_MMAP
557#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
558#else /* HAVE_MMAP */
559#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
560#endif /* HAVE_MMAP */
561#endif /* DEFAULT_MMAP_THRESHOLD */
562#ifndef USE_BUILTIN_FFS
563#define USE_BUILTIN_FFS 0
564#endif /* USE_BUILTIN_FFS */
565#ifndef USE_DEV_RANDOM
566#define USE_DEV_RANDOM 0
567#endif /* USE_DEV_RANDOM */
568#ifndef NO_MALLINFO
569#define NO_MALLINFO 0
570#endif /* NO_MALLINFO */
571#ifndef MALLINFO_FIELD_TYPE
572#define MALLINFO_FIELD_TYPE size_t
573#endif /* MALLINFO_FIELD_TYPE */
574
575/*
576 mallopt tuning options. SVID/XPG defines four standard parameter
577 numbers for mallopt, normally defined in malloc.h. None of these
578 are used in this malloc, so setting them has no effect. But this
579 malloc does support the following options.
580*/
581
582#define M_TRIM_THRESHOLD (-1)
583#define M_GRANULARITY (-2)
584#define M_MMAP_THRESHOLD (-3)
585
586/* ------------------------ Mallinfo declarations ------------------------ */
587
588#if !NO_MALLINFO
589/*
590 This version of malloc supports the standard SVID/XPG mallinfo
591 routine that returns a struct containing usage properties and
592 statistics. It should work on any system that has a
593 /usr/include/malloc.h defining struct mallinfo. The main
594 declaration needed is the mallinfo struct that is returned (by-copy)
595 by mallinfo(). The malloinfo struct contains a bunch of fields that
596 are not even meaningful in this version of malloc. These fields are
597 are instead filled by mallinfo() with other numbers that might be of
598 interest.
599
600 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
601 /usr/include/malloc.h file that includes a declaration of struct
602 mallinfo. If so, it is included; else a compliant version is
603 declared below. These must be precisely the same for mallinfo() to
604 work. The original SVID version of this struct, defined on most
605 systems with mallinfo, declares all fields as ints. But some others
606 define as unsigned long. If your system defines the fields using a
607 type of different width than listed here, you MUST #include your
608 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
609*/
610
611/* #define HAVE_USR_INCLUDE_MALLOC_H */
612
613#ifdef HAVE_USR_INCLUDE_MALLOC_H
614#include "/usr/include/malloc.h"
615#else /* HAVE_USR_INCLUDE_MALLOC_H */
616
617struct mallinfo {
618 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
619 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
620 MALLINFO_FIELD_TYPE smblks; /* always 0 */
621 MALLINFO_FIELD_TYPE hblks; /* always 0 */
622 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
623 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
624 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
625 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
626 MALLINFO_FIELD_TYPE fordblks; /* total free space */
627 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
628};
629
630#endif /* HAVE_USR_INCLUDE_MALLOC_H */
631#endif /* NO_MALLINFO */
632
633#ifdef __cplusplus
634extern "C" {
635#endif /* __cplusplus */
636
637#if !ONLY_MSPACES
638
639/* ------------------- Declarations of public routines ------------------- */
640
641#ifndef USE_DL_PREFIX
642#define dlcalloc calloc
643#define dlfree free
644#define dlmalloc malloc
645#define dlmemalign memalign
646#define dlrealloc realloc
647#define dlvalloc valloc
648#define dlpvalloc pvalloc
649#define dlmallinfo mallinfo
650#define dlmallopt mallopt
651#define dlmalloc_trim malloc_trim
652#define dlmalloc_stats malloc_stats
653#define dlmalloc_usable_size malloc_usable_size
654#define dlmalloc_footprint malloc_footprint
655#define dlmalloc_max_footprint malloc_max_footprint
656#define dlindependent_calloc independent_calloc
657#define dlindependent_comalloc independent_comalloc
658#endif /* USE_DL_PREFIX */
659
660
661/*
662 malloc(size_t n)
663 Returns a pointer to a newly allocated chunk of at least n bytes, or
664 null if no space is available, in which case errno is set to ENOMEM
665 on ANSI C systems.
666
667 If n is zero, malloc returns a minimum-sized chunk. (The minimum
668 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
669 systems.) Note that size_t is an unsigned type, so calls with
670 arguments that would be negative if signed are interpreted as
671 requests for huge amounts of space, which will often fail. The
672 maximum supported value of n differs across systems, but is in all
673 cases less than the maximum representable value of a size_t.
674*/
675void* dlmalloc(size_t);
676
677/*
678 free(void* p)
679 Releases the chunk of memory pointed to by p, that had been previously
680 allocated using malloc or a related routine such as realloc.
681 It has no effect if p is null. If p was not malloced or already
682 freed, free(p) will by default cause the current program to abort.
683*/
684void dlfree(void*);
685
686/*
687 calloc(size_t n_elements, size_t element_size);
688 Returns a pointer to n_elements * element_size bytes, with all locations
689 set to zero.
690*/
691void* dlcalloc(size_t, size_t);
692
693/*
694 realloc(void* p, size_t n)
695 Returns a pointer to a chunk of size n that contains the same data
696 as does chunk p up to the minimum of (n, p's size) bytes, or null
697 if no space is available.
698
699 The returned pointer may or may not be the same as p. The algorithm
700 prefers extending p in most cases when possible, otherwise it
701 employs the equivalent of a malloc-copy-free sequence.
702
703 If p is null, realloc is equivalent to malloc.
704
705 If space is not available, realloc returns null, errno is set (if on
706 ANSI) and p is NOT freed.
707
708 if n is for fewer bytes than already held by p, the newly unused
709 space is lopped off and freed if possible. realloc with a size
710 argument of zero (re)allocates a minimum-sized chunk.
711
712 The old unix realloc convention of allowing the last-free'd chunk
713 to be used as an argument to realloc is not supported.
714*/
715
716void* dlrealloc(void*, size_t);
717
718/*
719 memalign(size_t alignment, size_t n);
720 Returns a pointer to a newly allocated chunk of n bytes, aligned
721 in accord with the alignment argument.
722
723 The alignment argument should be a power of two. If the argument is
724 not a power of two, the nearest greater power is used.
725 8-byte alignment is guaranteed by normal malloc calls, so don't
726 bother calling memalign with an argument of 8 or less.
727
728 Overreliance on memalign is a sure way to fragment space.
729*/
730void* dlmemalign(size_t, size_t);
731
732/*
733 valloc(size_t n);
734 Equivalent to memalign(pagesize, n), where pagesize is the page
735 size of the system. If the pagesize is unknown, 4096 is used.
736*/
737void* dlvalloc(size_t);
738
739/*
740 mallopt(int parameter_number, int parameter_value)
741 Sets tunable parameters The format is to provide a
742 (parameter-number, parameter-value) pair. mallopt then sets the
743 corresponding parameter to the argument value if it can (i.e., so
744 long as the value is meaningful), and returns 1 if successful else
745 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
746 normally defined in malloc.h. None of these are use in this malloc,
747 so setting them has no effect. But this malloc also supports other
748 options in mallopt. See below for details. Briefly, supported
749 parameters are as follows (listed defaults are for "typical"
750 configurations).
751
752 Symbol param # default allowed param values
753 M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
754 M_GRANULARITY -2 page size any power of 2 >= page size
755 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
756*/
757int dlmallopt(int, int);
758
759/*
760 malloc_footprint();
761 Returns the number of bytes obtained from the system. The total
762 number of bytes allocated by malloc, realloc etc., is less than this
763 value. Unlike mallinfo, this function returns only a precomputed
764 result, so can be called frequently to monitor memory consumption.
765 Even if locks are otherwise defined, this function does not use them,
766 so results might not be up to date.
767*/
768size_t dlmalloc_footprint(void);
769
770/*
771 malloc_max_footprint();
772 Returns the maximum number of bytes obtained from the system. This
773 value will be greater than current footprint if deallocated space
774 has been reclaimed by the system. The peak number of bytes allocated
775 by malloc, realloc etc., is less than this value. Unlike mallinfo,
776 this function returns only a precomputed result, so can be called
777 frequently to monitor memory consumption. Even if locks are
778 otherwise defined, this function does not use them, so results might
779 not be up to date.
780*/
781size_t dlmalloc_max_footprint(void);
782
783#if !NO_MALLINFO
784/*
785 mallinfo()
786 Returns (by copy) a struct containing various summary statistics:
787
788 arena: current total non-mmapped bytes allocated from system
789 ordblks: the number of free chunks
790 smblks: always zero.
791 hblks: current number of mmapped regions
792 hblkhd: total bytes held in mmapped regions
793 usmblks: the maximum total allocated space. This will be greater
794 than current total if trimming has occurred.
795 fsmblks: always zero
796 uordblks: current total allocated space (normal or mmapped)
797 fordblks: total free space
798 keepcost: the maximum number of bytes that could ideally be released
799 back to system via malloc_trim. ("ideally" means that
800 it ignores page restrictions etc.)
801
802 Because these fields are ints, but internal bookkeeping may
803 be kept as longs, the reported values may wrap around zero and
804 thus be inaccurate.
805*/
806struct mallinfo dlmallinfo(void);
807#endif /* NO_MALLINFO */
808
809/*
810 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
811
812 independent_calloc is similar to calloc, but instead of returning a
813 single cleared space, it returns an array of pointers to n_elements
814 independent elements that can hold contents of size elem_size, each
815 of which starts out cleared, and can be independently freed,
816 realloc'ed etc. The elements are guaranteed to be adjacently
817 allocated (this is not guaranteed to occur with multiple callocs or
818 mallocs), which may also improve cache locality in some
819 applications.
820
821 The "chunks" argument is optional (i.e., may be null, which is
822 probably the most typical usage). If it is null, the returned array
823 is itself dynamically allocated and should also be freed when it is
824 no longer needed. Otherwise, the chunks array must be of at least
825 n_elements in length. It is filled in with the pointers to the
826 chunks.
827
828 In either case, independent_calloc returns this pointer array, or
829 null if the allocation failed. If n_elements is zero and "chunks"
830 is null, it returns a chunk representing an array with zero elements
831 (which should be freed if not wanted).
832
833 Each element must be individually freed when it is no longer
834 needed. If you'd like to instead be able to free all at once, you
835 should instead use regular calloc and assign pointers into this
836 space to represent elements. (In this case though, you cannot
837 independently free elements.)
838
839 independent_calloc simplifies and speeds up implementations of many
840 kinds of pools. It may also be useful when constructing large data
841 structures that initially have a fixed number of fixed-sized nodes,
842 but the number is not known at compile time, and some of the nodes
843 may later need to be freed. For example:
844
845 struct Node { int item; struct Node* next; };
846
847 struct Node* build_list() {
848 struct Node** pool;
849 int n = read_number_of_nodes_needed();
850 if (n <= 0) return 0;
851 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
852 if (pool == 0) die();
853 // organize into a linked list...
854 struct Node* first = pool[0];
855 for (i = 0; i < n-1; ++i)
856 pool[i]->next = pool[i+1];
857 free(pool); // Can now free the array (or not, if it is needed later)
858 return first;
859 }
860*/
861void** dlindependent_calloc(size_t, size_t, void**);
862
863/*
864 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
865
866 independent_comalloc allocates, all at once, a set of n_elements
867 chunks with sizes indicated in the "sizes" array. It returns
868 an array of pointers to these elements, each of which can be
869 independently freed, realloc'ed etc. The elements are guaranteed to
870 be adjacently allocated (this is not guaranteed to occur with
871 multiple callocs or mallocs), which may also improve cache locality
872 in some applications.
873
874 The "chunks" argument is optional (i.e., may be null). If it is null
875 the returned array is itself dynamically allocated and should also
876 be freed when it is no longer needed. Otherwise, the chunks array
877 must be of at least n_elements in length. It is filled in with the
878 pointers to the chunks.
879
880 In either case, independent_comalloc returns this pointer array, or
881 null if the allocation failed. If n_elements is zero and chunks is
882 null, it returns a chunk representing an array with zero elements
883 (which should be freed if not wanted).
884
885 Each element must be individually freed when it is no longer
886 needed. If you'd like to instead be able to free all at once, you
887 should instead use a single regular malloc, and assign pointers at
888 particular offsets in the aggregate space. (In this case though, you
889 cannot independently free elements.)
890
891 independent_comallac differs from independent_calloc in that each
892 element may have a different size, and also that it does not
893 automatically clear elements.
894
895 independent_comalloc can be used to speed up allocation in cases
896 where several structs or objects must always be allocated at the
897 same time. For example:
898
899 struct Head { ... }
900 struct Foot { ... }
901
902 void send_message(char* msg) {
903 int msglen = strlen(msg);
904 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
905 void* chunks[3];
906 if (independent_comalloc(3, sizes, chunks) == 0)
907 die();
908 struct Head* head = (struct Head*)(chunks[0]);
909 char* body = (char*)(chunks[1]);
910 struct Foot* foot = (struct Foot*)(chunks[2]);
911 // ...
912 }
913
914 In general though, independent_comalloc is worth using only for
915 larger values of n_elements. For small values, you probably won't
916 detect enough difference from series of malloc calls to bother.
917
918 Overuse of independent_comalloc can increase overall memory usage,
919 since it cannot reuse existing noncontiguous small chunks that
920 might be available for some of the elements.
921*/
922void** dlindependent_comalloc(size_t, size_t*, void**);
923
924
925/*
926 pvalloc(size_t n);
927 Equivalent to valloc(minimum-page-that-holds(n)), that is,
928 round up n to nearest pagesize.
929 */
930void* dlpvalloc(size_t);
931
932/*
933 malloc_trim(size_t pad);
934
935 If possible, gives memory back to the system (via negative arguments
936 to sbrk) if there is unused memory at the `high' end of the malloc
937 pool or in unused MMAP segments. You can call this after freeing
938 large blocks of memory to potentially reduce the system-level memory
939 requirements of a program. However, it cannot guarantee to reduce
940 memory. Under some allocation patterns, some large free blocks of
941 memory will be locked between two used chunks, so they cannot be
942 given back to the system.
943
944 The `pad' argument to malloc_trim represents the amount of free
945 trailing space to leave untrimmed. If this argument is zero, only
946 the minimum amount of memory to maintain internal data structures
947 will be left. Non-zero arguments can be supplied to maintain enough
948 trailing space to service future expected allocations without having
949 to re-obtain memory from the system.
950
951 Malloc_trim returns 1 if it actually released any memory, else 0.
952*/
953int dlmalloc_trim(size_t);
954
955/*
956 malloc_usable_size(void* p);
957
958 Returns the number of bytes you can actually use in
959 an allocated chunk, which may be more than you requested (although
960 often not) due to alignment and minimum size constraints.
961 You can use this many bytes without worrying about
962 overwriting other allocated objects. This is not a particularly great
963 programming practice. malloc_usable_size can be more useful in
964 debugging and assertions, for example:
965
966 p = malloc(n);
967 assert(malloc_usable_size(p) >= 256);
968*/
969size_t dlmalloc_usable_size(void*);
970
971/*
972 malloc_stats();
973 Prints on stderr the amount of space obtained from the system (both
974 via sbrk and mmap), the maximum amount (which may be more than
975 current if malloc_trim and/or munmap got called), and the current
976 number of bytes allocated via malloc (or realloc, etc) but not yet
977 freed. Note that this is the number of bytes allocated, not the
978 number requested. It will be larger than the number requested
979 because of alignment and bookkeeping overhead. Because it includes
980 alignment wastage as being in use, this figure may be greater than
981 zero even when no user-level chunks are allocated.
982
983 The reported current and maximum system memory can be inaccurate if
984 a program makes other calls to system memory allocation functions
985 (normally sbrk) outside of malloc.
986
987 malloc_stats prints only the most commonly interesting statistics.
988 More information can be obtained by calling mallinfo.
989*/
990void dlmalloc_stats(void);
991
992#endif /* ONLY_MSPACES */
993
994#if MSPACES
995
996/*
997 mspace is an opaque type representing an independent
998 region of space that supports mspace_malloc, etc.
999*/
1000typedef void* mspace;
1001
1002/*
1003 create_mspace creates and returns a new independent space with the
1004 given initial capacity, or, if 0, the default granularity size. It
1005 returns null if there is no system memory available to create the
1006 space. If argument locked is non-zero, the space uses a separate
1007 lock to control access. The capacity of the space will grow
1008 dynamically as needed to service mspace_malloc requests. You can
1009 control the sizes of incremental increases of this space by
1010 compiling with a different DEFAULT_GRANULARITY or dynamically
1011 setting with mallopt(M_GRANULARITY, value).
1012*/
1013mspace create_mspace(size_t capacity, int locked);
1014
1015/*
1016 destroy_mspace destroys the given space, and attempts to return all
1017 of its memory back to the system, returning the total number of
1018 bytes freed. After destruction, the results of access to all memory
1019 used by the space become undefined.
1020*/
1021size_t destroy_mspace(mspace msp);
1022
1023/*
1024 create_mspace_with_base uses the memory supplied as the initial base
1025 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1026 space is used for bookkeeping, so the capacity must be at least this
1027 large. (Otherwise 0 is returned.) When this initial space is
1028 exhausted, additional memory will be obtained from the system.
1029 Destroying this space will deallocate all additionally allocated
1030 space (if possible) but not the initial base.
1031*/
1032mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1033
1034/*
1035 mspace_malloc behaves as malloc, but operates within
1036 the given space.
1037*/
1038void* mspace_malloc(mspace msp, size_t bytes);
1039
1040/*
1041 mspace_free behaves as free, but operates within
1042 the given space.
1043
1044 If compiled with FOOTERS==1, mspace_free is not actually needed.
1045 free may be called instead of mspace_free because freed chunks from
1046 any space are handled by their originating spaces.
1047*/
1048void mspace_free(mspace msp, void* mem);
1049
1050/*
1051 mspace_realloc behaves as realloc, but operates within
1052 the given space.
1053
1054 If compiled with FOOTERS==1, mspace_realloc is not actually
1055 needed. realloc may be called instead of mspace_realloc because
1056 realloced chunks from any space are handled by their originating
1057 spaces.
1058*/
1059void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1060
1061/*
1062 mspace_calloc behaves as calloc, but operates within
1063 the given space.
1064*/
1065void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1066
1067/*
1068 mspace_memalign behaves as memalign, but operates within
1069 the given space.
1070*/
1071void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1072
1073/*
1074 mspace_independent_calloc behaves as independent_calloc, but
1075 operates within the given space.
1076*/
1077void** mspace_independent_calloc(mspace msp, size_t n_elements,
1078 size_t elem_size, void* chunks[]);
1079
1080/*
1081 mspace_independent_comalloc behaves as independent_comalloc, but
1082 operates within the given space.
1083*/
1084void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1085 size_t sizes[], void* chunks[]);
1086
1087/*
1088 mspace_footprint() returns the number of bytes obtained from the
1089 system for this space.
1090*/
1091size_t mspace_footprint(mspace msp);
1092
1093/*
1094 mspace_max_footprint() returns the peak number of bytes obtained from the
1095 system for this space.
1096*/
1097size_t mspace_max_footprint(mspace msp);
1098
1099
1100#if !NO_MALLINFO
1101/*
1102 mspace_mallinfo behaves as mallinfo, but reports properties of
1103 the given space.
1104*/
1105struct mallinfo mspace_mallinfo(mspace msp);
1106#endif /* NO_MALLINFO */
1107
1108/*
1109 mspace_malloc_stats behaves as malloc_stats, but reports
1110 properties of the given space.
1111*/
1112void mspace_malloc_stats(mspace msp);
1113
1114/*
1115 mspace_trim behaves as malloc_trim, but
1116 operates within the given space.
1117*/
1118int mspace_trim(mspace msp, size_t pad);
1119
1120/*
1121 An alias for mallopt.
1122*/
1123int mspace_mallopt(int, int);
1124
1125#endif /* MSPACES */
1126
1127#ifdef __cplusplus
1128}; /* end of extern "C" */
1129#endif /* __cplusplus */
1130
1131/*
1132 ========================================================================
1133 To make a fully customizable malloc.h header file, cut everything
1134 above this line, put into file malloc.h, edit to suit, and #include it
1135 on the next line, as well as in programs that use this malloc.
1136 ========================================================================
1137*/
1138
1139/* #include "malloc.h" */
1140
1141/*------------------------------ internal #includes ---------------------- */
1142
1143#ifdef WIN32
1144#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1145#endif /* WIN32 */
1146
1147#include <stdio.h> /* for printing in malloc_stats */
1148
1149#ifndef LACKS_ERRNO_H
1150#include <errno.h> /* for MALLOC_FAILURE_ACTION */
1151#endif /* LACKS_ERRNO_H */
1152#if FOOTERS
1153#include <time.h> /* for magic initialization */
1154#endif /* FOOTERS */
1155#ifndef LACKS_STDLIB_H
1156#include <stdlib.h> /* for abort() */
1157#endif /* LACKS_STDLIB_H */
1158#ifdef DEBUG
1159#if ABORT_ON_ASSERT_FAILURE
1160#define assert(x) if(!(x)) ABORT
1161#else /* ABORT_ON_ASSERT_FAILURE */
1162#include <assert.h>
1163#endif /* ABORT_ON_ASSERT_FAILURE */
1164#else /* DEBUG */
1165#define assert(x)
1166#endif /* DEBUG */
1167#ifndef LACKS_STRING_H
1168#include <string.h> /* for memset etc */
1169#endif /* LACKS_STRING_H */
1170#if USE_BUILTIN_FFS
1171#ifndef LACKS_STRINGS_H
1172#include <strings.h> /* for ffs */
1173#endif /* LACKS_STRINGS_H */
1174#endif /* USE_BUILTIN_FFS */
1175#if HAVE_MMAP
1176#ifndef LACKS_SYS_MMAN_H
1177#include <sys/mman.h> /* for mmap */
1178#endif /* LACKS_SYS_MMAN_H */
1179#ifndef LACKS_FCNTL_H
1180#include <fcntl.h>
1181#endif /* LACKS_FCNTL_H */
1182#endif /* HAVE_MMAP */
1183#if HAVE_MORECORE
1184#ifndef LACKS_UNISTD_H
1185#include <unistd.h> /* for sbrk */
1186#else /* LACKS_UNISTD_H */
1187#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1188extern void* sbrk(ptrdiff_t);
1189#endif /* FreeBSD etc */
1190#endif /* LACKS_UNISTD_H */
1191#endif /* HAVE_MMAP */
1192
1193#ifndef WIN32
1194#ifndef malloc_getpagesize
1195# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1196# ifndef _SC_PAGE_SIZE
1197# define _SC_PAGE_SIZE _SC_PAGESIZE
1198# endif
1199# endif
1200# ifdef _SC_PAGE_SIZE
1201# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1202# else
1203# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1204 extern size_t getpagesize();
1205# define malloc_getpagesize getpagesize()
1206# else
1207# ifdef WIN32 /* use supplied emulation of getpagesize */
1208# define malloc_getpagesize getpagesize()
1209# else
1210# ifndef LACKS_SYS_PARAM_H
1211# include <sys/param.h>
1212# endif
1213# ifdef EXEC_PAGESIZE
1214# define malloc_getpagesize EXEC_PAGESIZE
1215# else
1216# ifdef NBPG
1217# ifndef CLSIZE
1218# define malloc_getpagesize NBPG
1219# else
1220# define malloc_getpagesize (NBPG * CLSIZE)
1221# endif
1222# else
1223# ifdef NBPC
1224# define malloc_getpagesize NBPC
1225# else
1226# ifdef PAGESIZE
1227# define malloc_getpagesize PAGESIZE
1228# else /* just guess */
1229# define malloc_getpagesize ((size_t)4096U)
1230# endif
1231# endif
1232# endif
1233# endif
1234# endif
1235# endif
1236# endif
1237#endif
1238#endif
1239
1240/* ------------------- size_t and alignment properties -------------------- */
1241
1242/* The byte and bit size of a size_t */
1243#define SIZE_T_SIZE (sizeof(size_t))
1244#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1245
1246/* Some constants coerced to size_t */
1247/* Annoying but necessary to avoid errors on some plaftorms */
1248#define SIZE_T_ZERO ((size_t)0)
1249#define SIZE_T_ONE ((size_t)1)
1250#define SIZE_T_TWO ((size_t)2)
1251#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1252#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1253#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1254#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1255
1256/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1257#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1258
1259/* True if address a has acceptable alignment */
1260#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1261
1262/* the number of bytes to offset an address to align it */
1263#define align_offset(A)\
1264 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1265 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1266
1267/* -------------------------- MMAP preliminaries ------------------------- */
1268
1269/*
1270 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1271 checks to fail so compiler optimizer can delete code rather than
1272 using so many "#if"s.
1273*/
1274
1275
1276/* MORECORE and MMAP must return MFAIL on failure */
1277#define MFAIL ((void*)(MAX_SIZE_T))
1278#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1279
1280#if !HAVE_MMAP
1281#define IS_MMAPPED_BIT (SIZE_T_ZERO)
1282#define USE_MMAP_BIT (SIZE_T_ZERO)
1283#define CALL_MMAP(s) MFAIL
1284#define CALL_MUNMAP(a, s) (-1)
1285#define DIRECT_MMAP(s) MFAIL
1286
1287#else /* HAVE_MMAP */
1288#define IS_MMAPPED_BIT (SIZE_T_ONE)
1289#define USE_MMAP_BIT (SIZE_T_ONE)
1290
1291#ifndef WIN32
1292#define CALL_MUNMAP(a, s) munmap((a), (s))
1293#define MMAP_PROT (PROT_READ|PROT_WRITE)
1294#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1295#define MAP_ANONYMOUS MAP_ANON
1296#endif /* MAP_ANON */
1297#ifdef MAP_ANONYMOUS
1298#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1299#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1300#else /* MAP_ANONYMOUS */
1301/*
1302 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1303 is unlikely to be needed, but is supplied just in case.
1304*/
1305#define MMAP_FLAGS (MAP_PRIVATE)
1306static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1307#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
1308 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1309 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1310 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1311#endif /* MAP_ANONYMOUS */
1312
1313#define DIRECT_MMAP(s) CALL_MMAP(s)
1314#else /* WIN32 */
1315
1316/* Win32 MMAP via VirtualAlloc */
1317static void* win32mmap(size_t size) {
1318 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1319 return (ptr != 0)? ptr: MFAIL;
1320}
1321
1322/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1323static void* win32direct_mmap(size_t size) {
1324 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1325 PAGE_READWRITE);
1326 return (ptr != 0)? ptr: MFAIL;
1327}
1328
1329/* This function supports releasing coalesed segments */
1330static int win32munmap(void* ptr, size_t size) {
1331 MEMORY_BASIC_INFORMATION minfo;
1332 char* cptr = ptr;
1333 while (size) {
1334 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1335 return -1;
1336 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1337 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1338 return -1;
1339 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1340 return -1;
1341 cptr += minfo.RegionSize;
1342 size -= minfo.RegionSize;
1343 }
1344 return 0;
1345}
1346
1347#define CALL_MMAP(s) win32mmap(s)
1348#define CALL_MUNMAP(a, s) win32munmap((a), (s))
1349#define DIRECT_MMAP(s) win32direct_mmap(s)
1350#endif /* WIN32 */
1351#endif /* HAVE_MMAP */
1352
1353#if HAVE_MMAP && HAVE_MREMAP
1354#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1355#else /* HAVE_MMAP && HAVE_MREMAP */
1356#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1357#endif /* HAVE_MMAP && HAVE_MREMAP */
1358
1359#if HAVE_MORECORE
1360#define CALL_MORECORE(S) MORECORE(S)
1361#else /* HAVE_MORECORE */
1362#define CALL_MORECORE(S) MFAIL
1363#endif /* HAVE_MORECORE */
1364
1365/* mstate bit set if continguous morecore disabled or failed */
1366#define USE_NONCONTIGUOUS_BIT (4U)
1367
1368/* segment bit set in create_mspace_with_base */
1369#define EXTERN_BIT (8U)
1370
1371
1372/* --------------------------- Lock preliminaries ------------------------ */
1373
1374#if USE_LOCKS
1375
1376/*
1377 When locks are defined, there are up to two global locks:
1378
1379 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
1380 MORECORE. In many cases sys_alloc requires two calls, that should
1381 not be interleaved with calls by other threads. This does not
1382 protect against direct calls to MORECORE by other threads not
1383 using this lock, so there is still code to cope the best we can on
1384 interference.
1385
1386 * magic_init_mutex ensures that mparams.magic and other
1387 unique mparams values are initialized only once.
1388*/
1389
1390#ifndef WIN32
1391/* By default use posix locks */
1392#include <pthread.h>
1393#define MLOCK_T pthread_mutex_t
1394#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
1395#define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
1396#define RELEASE_LOCK(l) pthread_mutex_unlock(l)
1397
1398#if HAVE_MORECORE
1399static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
1400#endif /* HAVE_MORECORE */
1401
1402static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
1403
1404#else /* WIN32 */
1405/*
1406 Because lock-protected regions have bounded times, and there
1407 are no recursive lock calls, we can use simple spinlocks.
1408*/
1409
1410#define MLOCK_T long
1411static int win32_acquire_lock (MLOCK_T *sl) {
1412 for (;;) {
1413#ifdef InterlockedCompareExchangePointer
1414 if (!InterlockedCompareExchange(sl, 1, 0))
1415 return 0;
1416#else /* Use older void* version */
1417 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
1418 return 0;
1419#endif /* InterlockedCompareExchangePointer */
1420 Sleep (0);
1421 }
1422}
1423
1424static void win32_release_lock (MLOCK_T *sl) {
1425 InterlockedExchange (sl, 0);
1426}
1427
1428#define INITIAL_LOCK(l) *(l)=0
1429#define ACQUIRE_LOCK(l) win32_acquire_lock(l)
1430#define RELEASE_LOCK(l) win32_release_lock(l)
1431#if HAVE_MORECORE
1432static MLOCK_T morecore_mutex;
1433#endif /* HAVE_MORECORE */
1434static MLOCK_T magic_init_mutex;
1435#endif /* WIN32 */
1436
1437#define USE_LOCK_BIT (2U)
1438#else /* USE_LOCKS */
1439#define USE_LOCK_BIT (0U)
1440#define INITIAL_LOCK(l)
1441#endif /* USE_LOCKS */
1442
1443#if USE_LOCKS && HAVE_MORECORE
1444#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
1445#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
1446#else /* USE_LOCKS && HAVE_MORECORE */
1447#define ACQUIRE_MORECORE_LOCK()
1448#define RELEASE_MORECORE_LOCK()
1449#endif /* USE_LOCKS && HAVE_MORECORE */
1450
1451#if USE_LOCKS
1452#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
1453#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
1454#else /* USE_LOCKS */
1455#define ACQUIRE_MAGIC_INIT_LOCK()
1456#define RELEASE_MAGIC_INIT_LOCK()
1457#endif /* USE_LOCKS */
1458
1459
1460/* ----------------------- Chunk representations ------------------------ */
1461
1462/*
1463 (The following includes lightly edited explanations by Colin Plumb.)
1464
1465 The malloc_chunk declaration below is misleading (but accurate and
1466 necessary). It declares a "view" into memory allowing access to
1467 necessary fields at known offsets from a given base.
1468
1469 Chunks of memory are maintained using a `boundary tag' method as
1470 originally described by Knuth. (See the paper by Paul Wilson
1471 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1472 techniques.) Sizes of free chunks are stored both in the front of
1473 each chunk and at the end. This makes consolidating fragmented
1474 chunks into bigger chunks fast. The head fields also hold bits
1475 representing whether chunks are free or in use.
1476
1477 Here are some pictures to make it clearer. They are "exploded" to
1478 show that the state of a chunk can be thought of as extending from
1479 the high 31 bits of the head field of its header through the
1480 prev_foot and PINUSE_BIT bit of the following chunk header.
1481
1482 A chunk that's in use looks like:
1483
1484 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1485 | Size of previous chunk (if P = 1) |
1486 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1488 | Size of this chunk 1| +-+
1489 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1490 | |
1491 +- -+
1492 | |
1493 +- -+
1494 | :
1495 +- size - sizeof(size_t) available payload bytes -+
1496 : |
1497 chunk-> +- -+
1498 | |
1499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
1501 | Size of next chunk (may or may not be in use) | +-+
1502 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1503
1504 And if it's free, it looks like this:
1505
1506 chunk-> +- -+
1507 | User payload (must be in use, or we would have merged!) |
1508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1510 | Size of this chunk 0| +-+
1511 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1512 | Next pointer |
1513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1514 | Prev pointer |
1515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1516 | :
1517 +- size - sizeof(struct chunk) unused bytes -+
1518 : |
1519 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1520 | Size of this chunk |
1521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
1523 | Size of next chunk (must be in use, or we would have merged)| +-+
1524 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1525 | :
1526 +- User payload -+
1527 : |
1528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1529 |0|
1530 +-+
1531 Note that since we always merge adjacent free chunks, the chunks
1532 adjacent to a free chunk must be in use.
1533
1534 Given a pointer to a chunk (which can be derived trivially from the
1535 payload pointer) we can, in O(1) time, find out whether the adjacent
1536 chunks are free, and if so, unlink them from the lists that they
1537 are on and merge them with the current chunk.
1538
1539 Chunks always begin on even word boundaries, so the mem portion
1540 (which is returned to the user) is also on an even word boundary, and
1541 thus at least double-word aligned.
1542
1543 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1544 chunk size (which is always a multiple of two words), is an in-use
1545 bit for the *previous* chunk. If that bit is *clear*, then the
1546 word before the current chunk size contains the previous chunk
1547 size, and can be used to find the front of the previous chunk.
1548 The very first chunk allocated always has this bit set, preventing
1549 access to non-existent (or non-owned) memory. If pinuse is set for
1550 any given chunk, then you CANNOT determine the size of the
1551 previous chunk, and might even get a memory addressing fault when
1552 trying to do so.
1553
1554 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1555 the chunk size redundantly records whether the current chunk is
1556 inuse. This redundancy enables usage checks within free and realloc,
1557 and reduces indirection when freeing and consolidating chunks.
1558
1559 Each freshly allocated chunk must have both cinuse and pinuse set.
1560 That is, each allocated chunk borders either a previously allocated
1561 and still in-use chunk, or the base of its memory arena. This is
1562 ensured by making all allocations from the the `lowest' part of any
1563 found chunk. Further, no free chunk physically borders another one,
1564 so each free chunk is known to be preceded and followed by either
1565 inuse chunks or the ends of memory.
1566
1567 Note that the `foot' of the current chunk is actually represented
1568 as the prev_foot of the NEXT chunk. This makes it easier to
1569 deal with alignments etc but can be very confusing when trying
1570 to extend or adapt this code.
1571
1572 The exceptions to all this are
1573
1574 1. The special chunk `top' is the top-most available chunk (i.e.,
1575 the one bordering the end of available memory). It is treated
1576 specially. Top is never included in any bin, is used only if
1577 no other chunk is available, and is released back to the
1578 system if it is very large (see M_TRIM_THRESHOLD). In effect,
1579 the top chunk is treated as larger (and thus less well
1580 fitting) than any other available chunk. The top chunk
1581 doesn't update its trailing size field since there is no next
1582 contiguous chunk that would have to index off it. However,
1583 space is still allocated for it (TOP_FOOT_SIZE) to enable
1584 separation or merging when space is extended.
1585
1586 3. Chunks allocated via mmap, which have the lowest-order bit
1587 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1588 PINUSE_BIT in their head fields. Because they are allocated
1589 one-by-one, each must carry its own prev_foot field, which is
1590 also used to hold the offset this chunk has within its mmapped
1591 region, which is needed to preserve alignment. Each mmapped
1592 chunk is trailed by the first two fields of a fake next-chunk
1593 for sake of usage checks.
1594
1595*/
1596
1597struct malloc_chunk {
1598 size_t prev_foot; /* Size of previous chunk (if free). */
1599 size_t head; /* Size and inuse bits. */
1600 struct malloc_chunk* fd; /* double links -- used only if free. */
1601 struct malloc_chunk* bk;
1602};
1603
1604typedef struct malloc_chunk mchunk;
1605typedef struct malloc_chunk* mchunkptr;
1606typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
1607typedef unsigned int bindex_t; /* Described below */
1608typedef unsigned int binmap_t; /* Described below */
1609typedef unsigned int flag_t; /* The type of various bit flag sets */
1610
1611/* ------------------- Chunks sizes and alignments ----------------------- */
1612
1613#define MCHUNK_SIZE (sizeof(mchunk))
1614
1615#if FOOTERS
1616#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1617#else /* FOOTERS */
1618#define CHUNK_OVERHEAD (SIZE_T_SIZE)
1619#endif /* FOOTERS */
1620
1621/* MMapped chunks need a second word of overhead ... */
1622#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1623/* ... and additional padding for fake next-chunk at foot */
1624#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
1625
1626/* The smallest size we can malloc is an aligned minimal chunk */
1627#define MIN_CHUNK_SIZE\
1628 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1629
1630/* conversion from malloc headers to user pointers, and back */
1631#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
1632#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1633/* chunk associated with aligned address A */
1634#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
1635
1636/* Bounds on request (not chunk) sizes. */
1637#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
1638#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1639
1640/* pad request bytes into a usable size */
1641#define pad_request(req) \
1642 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1643
1644/* pad request, checking for minimum (but not maximum) */
1645#define request2size(req) \
1646 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1647
1648
1649/* ------------------ Operations on head and foot fields ----------------- */
1650
1651/*
1652 The head field of a chunk is or'ed with PINUSE_BIT when previous
1653 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1654 use. If the chunk was obtained with mmap, the prev_foot field has
1655 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1656 mmapped region to the base of the chunk.
1657*/
1658
1659#define PINUSE_BIT (SIZE_T_ONE)
1660#define CINUSE_BIT (SIZE_T_TWO)
1661#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1662
1663/* Head value for fenceposts */
1664#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1665
1666/* extraction of fields from head words */
1667#define cinuse(p) ((p)->head & CINUSE_BIT)
1668#define pinuse(p) ((p)->head & PINUSE_BIT)
1669#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1670
1671#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1672#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1673
1674/* Treat space at ptr +/- offset as a chunk */
1675#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1676#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1677
1678/* Ptr to next or previous physical malloc_chunk. */
1679#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1680#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1681
1682/* extract next chunk's pinuse bit */
1683#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1684
1685/* Get/set size at footer */
1686#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1687#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1688
1689/* Set size, pinuse bit, and foot */
1690#define set_size_and_pinuse_of_free_chunk(p, s)\
1691 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1692
1693/* Set size, pinuse bit, foot, and clear next pinuse */
1694#define set_free_with_pinuse(p, s, n)\
1695 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1696
1697#define is_mmapped(p)\
1698 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1699
1700/* Get the internal overhead associated with chunk p */
1701#define overhead_for(p)\
1702 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1703
1704/* Return true if malloced space is not necessarily cleared */
1705#if MMAP_CLEARS
1706#define calloc_must_clear(p) (!is_mmapped(p))
1707#else /* MMAP_CLEARS */
1708#define calloc_must_clear(p) (1)
1709#endif /* MMAP_CLEARS */
1710
1711/* ---------------------- Overlaid data structures ----------------------- */
1712
1713/*
1714 When chunks are not in use, they are treated as nodes of either
1715 lists or trees.
1716
1717 "Small" chunks are stored in circular doubly-linked lists, and look
1718 like this:
1719
1720 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1721 | Size of previous chunk |
1722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1723 `head:' | Size of chunk, in bytes |P|
1724 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1725 | Forward pointer to next chunk in list |
1726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1727 | Back pointer to previous chunk in list |
1728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1729 | Unused space (may be 0 bytes long) .
1730 . .
1731 . |
1732nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1733 `foot:' | Size of chunk, in bytes |
1734 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1735
1736 Larger chunks are kept in a form of bitwise digital trees (aka
1737 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1738 free chunks greater than 256 bytes, their size doesn't impose any
1739 constraints on user chunk sizes. Each node looks like:
1740
1741 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1742 | Size of previous chunk |
1743 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1744 `head:' | Size of chunk, in bytes |P|
1745 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1746 | Forward pointer to next chunk of same size |
1747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1748 | Back pointer to previous chunk of same size |
1749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1750 | Pointer to left child (child[0]) |
1751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1752 | Pointer to right child (child[1]) |
1753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1754 | Pointer to parent |
1755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1756 | bin index of this chunk |
1757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1758 | Unused space .
1759 . |
1760nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1761 `foot:' | Size of chunk, in bytes |
1762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1763
1764 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1765 of the same size are arranged in a circularly-linked list, with only
1766 the oldest chunk (the next to be used, in our FIFO ordering)
1767 actually in the tree. (Tree members are distinguished by a non-null
1768 parent pointer.) If a chunk with the same size an an existing node
1769 is inserted, it is linked off the existing node using pointers that
1770 work in the same way as fd/bk pointers of small chunks.
1771
1772 Each tree contains a power of 2 sized range of chunk sizes (the
1773 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1774 tree level, with the chunks in the smaller half of the range (0x100
1775 <= x < 0x140 for the top nose) in the left subtree and the larger
1776 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1777 done by inspecting individual bits.
1778
1779 Using these rules, each node's left subtree contains all smaller
1780 sizes than its right subtree. However, the node at the root of each
1781 subtree has no particular ordering relationship to either. (The
1782 dividing line between the subtree sizes is based on trie relation.)
1783 If we remove the last chunk of a given size from the interior of the
1784 tree, we need to replace it with a leaf node. The tree ordering
1785 rules permit a node to be replaced by any leaf below it.
1786
1787 The smallest chunk in a tree (a common operation in a best-fit
1788 allocator) can be found by walking a path to the leftmost leaf in
1789 the tree. Unlike a usual binary tree, where we follow left child
1790 pointers until we reach a null, here we follow the right child
1791 pointer any time the left one is null, until we reach a leaf with
1792 both child pointers null. The smallest chunk in the tree will be
1793 somewhere along that path.
1794
1795 The worst case number of steps to add, find, or remove a node is
1796 bounded by the number of bits differentiating chunks within
1797 bins. Under current bin calculations, this ranges from 6 up to 21
1798 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1799 is of course much better.
1800*/
1801
1802struct malloc_tree_chunk {
1803 /* The first four fields must be compatible with malloc_chunk */
1804 size_t prev_foot;
1805 size_t head;
1806 struct malloc_tree_chunk* fd;
1807 struct malloc_tree_chunk* bk;
1808
1809 struct malloc_tree_chunk* child[2];
1810 struct malloc_tree_chunk* parent;
1811 bindex_t index;
1812};
1813
1814typedef struct malloc_tree_chunk tchunk;
1815typedef struct malloc_tree_chunk* tchunkptr;
1816typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1817
1818/* A little helper macro for trees */
1819#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1820
1821/* ----------------------------- Segments -------------------------------- */
1822
1823/*
1824 Each malloc space may include non-contiguous segments, held in a
1825 list headed by an embedded malloc_segment record representing the
1826 top-most space. Segments also include flags holding properties of
1827 the space. Large chunks that are directly allocated by mmap are not
1828 included in this list. They are instead independently created and
1829 destroyed without otherwise keeping track of them.
1830
1831 Segment management mainly comes into play for spaces allocated by
1832 MMAP. Any call to MMAP might or might not return memory that is
1833 adjacent to an existing segment. MORECORE normally contiguously
1834 extends the current space, so this space is almost always adjacent,
1835 which is simpler and faster to deal with. (This is why MORECORE is
1836 used preferentially to MMAP when both are available -- see
1837 sys_alloc.) When allocating using MMAP, we don't use any of the
1838 hinting mechanisms (inconsistently) supported in various
1839 implementations of unix mmap, or distinguish reserving from
1840 committing memory. Instead, we just ask for space, and exploit
1841 contiguity when we get it. It is probably possible to do
1842 better than this on some systems, but no general scheme seems
1843 to be significantly better.
1844
1845 Management entails a simpler variant of the consolidation scheme
1846 used for chunks to reduce fragmentation -- new adjacent memory is
1847 normally prepended or appended to an existing segment. However,
1848 there are limitations compared to chunk consolidation that mostly
1849 reflect the fact that segment processing is relatively infrequent
1850 (occurring only when getting memory from system) and that we
1851 don't expect to have huge numbers of segments:
1852
1853 * Segments are not indexed, so traversal requires linear scans. (It
1854 would be possible to index these, but is not worth the extra
1855 overhead and complexity for most programs on most platforms.)
1856 * New segments are only appended to old ones when holding top-most
1857 memory; if they cannot be prepended to others, they are held in
1858 different segments.
1859
1860 Except for the top-most segment of an mstate, each segment record
1861 is kept at the tail of its segment. Segments are added by pushing
1862 segment records onto the list headed by &mstate.seg for the
1863 containing mstate.
1864
1865 Segment flags control allocation/merge/deallocation policies:
1866 * If EXTERN_BIT set, then we did not allocate this segment,
1867 and so should not try to deallocate or merge with others.
1868 (This currently holds only for the initial segment passed
1869 into create_mspace_with_base.)
1870 * If IS_MMAPPED_BIT set, the segment may be merged with
1871 other surrounding mmapped segments and trimmed/de-allocated
1872 using munmap.
1873 * If neither bit is set, then the segment was obtained using
1874 MORECORE so can be merged with surrounding MORECORE'd segments
1875 and deallocated/trimmed using MORECORE with negative arguments.
1876*/
1877
1878struct malloc_segment {
1879 char* base; /* base address */
1880 size_t size; /* allocated size */
1881 struct malloc_segment* next; /* ptr to next segment */
1882 flag_t sflags; /* mmap and extern flag */
1883};
1884
1885#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1886#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1887
1888typedef struct malloc_segment msegment;
1889typedef struct malloc_segment* msegmentptr;
1890
1891/* ---------------------------- malloc_state ----------------------------- */
1892
1893/*
1894 A malloc_state holds all of the bookkeeping for a space.
1895 The main fields are:
1896
1897 Top
1898 The topmost chunk of the currently active segment. Its size is
1899 cached in topsize. The actual size of topmost space is
1900 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1901 fenceposts and segment records if necessary when getting more
1902 space from the system. The size at which to autotrim top is
1903 cached from mparams in trim_check, except that it is disabled if
1904 an autotrim fails.
1905
1906 Designated victim (dv)
1907 This is the preferred chunk for servicing small requests that
1908 don't have exact fits. It is normally the chunk split off most
1909 recently to service another small request. Its size is cached in
1910 dvsize. The link fields of this chunk are not maintained since it
1911 is not kept in a bin.
1912
1913 SmallBins
1914 An array of bin headers for free chunks. These bins hold chunks
1915 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1916 chunks of all the same size, spaced 8 bytes apart. To simplify
1917 use in double-linked lists, each bin header acts as a malloc_chunk
1918 pointing to the real first node, if it exists (else pointing to
1919 itself). This avoids special-casing for headers. But to avoid
1920 waste, we allocate only the fd/bk pointers of bins, and then use
1921 repositioning tricks to treat these as the fields of a chunk.
1922
1923 TreeBins
1924 Treebins are pointers to the roots of trees holding a range of
1925 sizes. There are 2 equally spaced treebins for each power of two
1926 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1927 larger.
1928
1929 Bin maps
1930 There is one bit map for small bins ("smallmap") and one for
1931 treebins ("treemap). Each bin sets its bit when non-empty, and
1932 clears the bit when empty. Bit operations are then used to avoid
1933 bin-by-bin searching -- nearly all "search" is done without ever
1934 looking at bins that won't be selected. The bit maps
1935 conservatively use 32 bits per map word, even if on 64bit system.
1936 For a good description of some of the bit-based techniques used
1937 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1938 supplement at http://hackersdelight.org/). Many of these are
1939 intended to reduce the branchiness of paths through malloc etc, as
1940 well as to reduce the number of memory locations read or written.
1941
1942 Segments
1943 A list of segments headed by an embedded malloc_segment record
1944 representing the initial space.
1945
1946 Address check support
1947 The least_addr field is the least address ever obtained from
1948 MORECORE or MMAP. Attempted frees and reallocs of any address less
1949 than this are trapped (unless INSECURE is defined).
1950
1951 Magic tag
1952 A cross-check field that should always hold same value as mparams.magic.
1953
1954 Flags
1955 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1956
1957 Statistics
1958 Each space keeps track of current and maximum system memory
1959 obtained via MORECORE or MMAP.
1960
1961 Locking
1962 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1963 around every public call using this mspace.
1964*/
1965
1966/* Bin types, widths and sizes */
1967#define NSMALLBINS (32U)
1968#define NTREEBINS (32U)
1969#define SMALLBIN_SHIFT (3U)
1970#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1971#define TREEBIN_SHIFT (8U)
1972#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1973#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1974#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1975
1976struct malloc_state {
1977 binmap_t smallmap;
1978 binmap_t treemap;
1979 size_t dvsize;
1980 size_t topsize;
1981 char* least_addr;
1982 mchunkptr dv;
1983 mchunkptr top;
1984 size_t trim_check;
1985 size_t magic;
1986 mchunkptr smallbins[(NSMALLBINS+1)*2];
1987 tbinptr treebins[NTREEBINS];
1988 size_t footprint;
1989 size_t max_footprint;
1990 flag_t mflags;
1991#if USE_LOCKS
1992 MLOCK_T mutex; /* locate lock among fields that rarely change */
1993#endif /* USE_LOCKS */
1994 msegment seg;
1995};
1996
1997typedef struct malloc_state* mstate;
1998
1999/* ------------- Global malloc_state and malloc_params ------------------- */
2000
2001/*
2002 malloc_params holds global properties, including those that can be
2003 dynamically set using mallopt. There is a single instance, mparams,
2004 initialized in init_mparams.
2005*/
2006
2007struct malloc_params {
2008 size_t magic;
2009 size_t page_size;
2010 size_t granularity;
2011 size_t mmap_threshold;
2012 size_t trim_threshold;
2013 flag_t default_mflags;
2014};
2015
2016static struct malloc_params mparams;
2017
2018/* The global malloc_state used for all non-"mspace" calls */
2019static struct malloc_state _gm_;
2020#define gm (&_gm_)
2021#define is_global(M) ((M) == &_gm_)
2022#define is_initialized(M) ((M)->top != 0)
2023
2024/* -------------------------- system alloc setup ------------------------- */
2025
2026/* Operations on mflags */
2027
2028#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2029#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2030#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2031
2032#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2033#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2034#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2035
2036#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2037#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2038
2039#define set_lock(M,L)\
2040 ((M)->mflags = (L)?\
2041 ((M)->mflags | USE_LOCK_BIT) :\
2042 ((M)->mflags & ~USE_LOCK_BIT))
2043
2044/* page-align a size */
2045#define page_align(S)\
2046 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
2047
2048/* granularity-align a size */
2049#define granularity_align(S)\
2050 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
2051
2052#define is_page_aligned(S)\
2053 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2054#define is_granularity_aligned(S)\
2055 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2056
2057/* True if segment S holds address A */
2058#define segment_holds(S, A)\
2059 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2060
2061/* Return segment holding given address */
2062static msegmentptr segment_holding(mstate m, char* addr) {
2063 msegmentptr sp = &m->seg;
2064 for (;;) {
2065 if (addr >= sp->base && addr < sp->base + sp->size)
2066 return sp;
2067 if ((sp = sp->next) == 0)
2068 return 0;
2069 }
2070}
2071
2072/* Return true if segment contains a segment link */
2073static int has_segment_link(mstate m, msegmentptr ss) {
2074 msegmentptr sp = &m->seg;
2075 for (;;) {
2076 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2077 return 1;
2078 if ((sp = sp->next) == 0)
2079 return 0;
2080 }
2081}
2082
2083#ifndef MORECORE_CANNOT_TRIM
2084#define should_trim(M,s) ((s) > (M)->trim_check)
2085#else /* MORECORE_CANNOT_TRIM */
2086#define should_trim(M,s) (0)
2087#endif /* MORECORE_CANNOT_TRIM */
2088
2089/*
2090 TOP_FOOT_SIZE is padding at the end of a segment, including space
2091 that may be needed to place segment records and fenceposts when new
2092 noncontiguous segments are added.
2093*/
2094#define TOP_FOOT_SIZE\
2095 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2096
2097
2098/* ------------------------------- Hooks -------------------------------- */
2099
2100/*
2101 PREACTION should be defined to return 0 on success, and nonzero on
2102 failure. If you are not using locking, you can redefine these to do
2103 anything you like.
2104*/
2105
2106#if USE_LOCKS
2107
2108/* Ensure locks are initialized */
2109#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
2110
2111#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2112#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2113#else /* USE_LOCKS */
2114
2115#ifndef PREACTION
2116#define PREACTION(M) (0)
2117#endif /* PREACTION */
2118
2119#ifndef POSTACTION
2120#define POSTACTION(M)
2121#endif /* POSTACTION */
2122
2123#endif /* USE_LOCKS */
2124
2125/*
2126 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2127 USAGE_ERROR_ACTION is triggered on detected bad frees and
2128 reallocs. The argument p is an address that might have triggered the
2129 fault. It is ignored by the two predefined actions, but might be
2130 useful in custom actions that try to help diagnose errors.
2131*/
2132
2133#if PROCEED_ON_ERROR
2134
2135/* A count of the number of corruption errors causing resets */
2136int malloc_corruption_error_count;
2137
2138/* default corruption action */
2139static void reset_on_error(mstate m);
2140
2141#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2142#define USAGE_ERROR_ACTION(m, p)
2143
2144#else /* PROCEED_ON_ERROR */
2145
2146#ifndef CORRUPTION_ERROR_ACTION
2147#define CORRUPTION_ERROR_ACTION(m) ABORT
2148#endif /* CORRUPTION_ERROR_ACTION */
2149
2150#ifndef USAGE_ERROR_ACTION
2151#define USAGE_ERROR_ACTION(m,p) ABORT
2152#endif /* USAGE_ERROR_ACTION */
2153
2154#endif /* PROCEED_ON_ERROR */
2155
2156/* -------------------------- Debugging setup ---------------------------- */
2157
2158#if ! DEBUG
2159
2160#define check_free_chunk(M,P)
2161#define check_inuse_chunk(M,P)
2162#define check_malloced_chunk(M,P,N)
2163#define check_mmapped_chunk(M,P)
2164#define check_malloc_state(M)
2165#define check_top_chunk(M,P)
2166
2167#else /* DEBUG */
2168#define check_free_chunk(M,P) do_check_free_chunk(M,P)
2169#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2170#define check_top_chunk(M,P) do_check_top_chunk(M,P)
2171#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2172#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2173#define check_malloc_state(M) do_check_malloc_state(M)
2174
2175static void do_check_any_chunk(mstate m, mchunkptr p);
2176static void do_check_top_chunk(mstate m, mchunkptr p);
2177static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2178static void do_check_inuse_chunk(mstate m, mchunkptr p);
2179static void do_check_free_chunk(mstate m, mchunkptr p);
2180static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2181static void do_check_tree(mstate m, tchunkptr t);
2182static void do_check_treebin(mstate m, bindex_t i);
2183static void do_check_smallbin(mstate m, bindex_t i);
2184static void do_check_malloc_state(mstate m);
2185static int bin_find(mstate m, mchunkptr x);
2186static size_t traverse_and_check(mstate m);
2187#endif /* DEBUG */
2188
2189/* ---------------------------- Indexing Bins ---------------------------- */
2190
2191#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2192#define small_index(s) ((s) >> SMALLBIN_SHIFT)
2193#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2194#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2195
2196/* addressing by index. See above about smallbin repositioning */
2197#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2198#define treebin_at(M,i) (&((M)->treebins[i]))
2199
2200/* assign tree index for size S to variable I */
2201#if defined(__GNUC__) && defined(i386)
2202#define compute_tree_index(S, I)\
2203{\
2204 size_t X = S >> TREEBIN_SHIFT;\
2205 if (X == 0)\
2206 I = 0;\
2207 else if (X > 0xFFFF)\
2208 I = NTREEBINS-1;\
2209 else {\
2210 unsigned int K;\
2211 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
2212 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2213 }\
2214}
2215#else /* GNUC */
2216#define compute_tree_index(S, I)\
2217{\
2218 size_t X = S >> TREEBIN_SHIFT;\
2219 if (X == 0)\
2220 I = 0;\
2221 else if (X > 0xFFFF)\
2222 I = NTREEBINS-1;\
2223 else {\
2224 unsigned int Y = (unsigned int)X;\
2225 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2226 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2227 N += K;\
2228 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2229 K = 14 - N + ((Y <<= K) >> 15);\
2230 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2231 }\
2232}
2233#endif /* GNUC */
2234
2235/* Bit representing maximum resolved size in a treebin at i */
2236#define bit_for_tree_index(i) \
2237 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2238
2239/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2240#define leftshift_for_tree_index(i) \
2241 ((i == NTREEBINS-1)? 0 : \
2242 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2243
2244/* The size of the smallest chunk held in bin with index i */
2245#define minsize_for_tree_index(i) \
2246 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2247 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2248
2249
2250/* ------------------------ Operations on bin maps ----------------------- */
2251
2252/* bit corresponding to given index */
2253#define idx2bit(i) ((binmap_t)(1) << (i))
2254
2255/* Mark/Clear bits with given index */
2256#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2257#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2258#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2259
2260#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2261#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2262#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2263
2264/* index corresponding to given bit */
2265
2266#if defined(__GNUC__) && defined(i386)
2267#define compute_bit2idx(X, I)\
2268{\
2269 unsigned int J;\
2270 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
2271 I = (bindex_t)J;\
2272}
2273
2274#else /* GNUC */
2275#if USE_BUILTIN_FFS
2276#define compute_bit2idx(X, I) I = ffs(X)-1
2277
2278#else /* USE_BUILTIN_FFS */
2279#define compute_bit2idx(X, I)\
2280{\
2281 unsigned int Y = X - 1;\
2282 unsigned int K = Y >> (16-4) & 16;\
2283 unsigned int N = K; Y >>= K;\
2284 N += K = Y >> (8-3) & 8; Y >>= K;\
2285 N += K = Y >> (4-2) & 4; Y >>= K;\
2286 N += K = Y >> (2-1) & 2; Y >>= K;\
2287 N += K = Y >> (1-0) & 1; Y >>= K;\
2288 I = (bindex_t)(N + Y);\
2289}
2290#endif /* USE_BUILTIN_FFS */
2291#endif /* GNUC */
2292
2293/* isolate the least set bit of a bitmap */
2294#define least_bit(x) ((x) & -(x))
2295
2296/* mask with all bits to left of least bit of x on */
2297#define left_bits(x) ((x<<1) | -(x<<1))
2298
2299/* mask with all bits to left of or equal to least bit of x on */
2300#define same_or_left_bits(x) ((x) | -(x))
2301
2302
2303/* ----------------------- Runtime Check Support ------------------------- */
2304
2305/*
2306 For security, the main invariant is that malloc/free/etc never
2307 writes to a static address other than malloc_state, unless static
2308 malloc_state itself has been corrupted, which cannot occur via
2309 malloc (because of these checks). In essence this means that we
2310 believe all pointers, sizes, maps etc held in malloc_state, but
2311 check all of those linked or offsetted from other embedded data
2312 structures. These checks are interspersed with main code in a way
2313 that tends to minimize their run-time cost.
2314
2315 When FOOTERS is defined, in addition to range checking, we also
2316 verify footer fields of inuse chunks, which can be used guarantee
2317 that the mstate controlling malloc/free is intact. This is a
2318 streamlined version of the approach described by William Robertson
2319 et al in "Run-time Detection of Heap-based Overflows" LISA'03
2320 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2321 of an inuse chunk holds the xor of its mstate and a random seed,
2322 that is checked upon calls to free() and realloc(). This is
2323 (probablistically) unguessable from outside the program, but can be
2324 computed by any code successfully malloc'ing any chunk, so does not
2325 itself provide protection against code that has already broken
2326 security through some other means. Unlike Robertson et al, we
2327 always dynamically check addresses of all offset chunks (previous,
2328 next, etc). This turns out to be cheaper than relying on hashes.
2329*/
2330
2331#if !INSECURE
2332/* Check if address a is at least as high as any from MORECORE or MMAP */
2333#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2334/* Check if address of next chunk n is higher than base chunk p */
2335#define ok_next(p, n) ((char*)(p) < (char*)(n))
2336/* Check if p has its cinuse bit on */
2337#define ok_cinuse(p) cinuse(p)
2338/* Check if p has its pinuse bit on */
2339#define ok_pinuse(p) pinuse(p)
2340
2341#else /* !INSECURE */
2342#define ok_address(M, a) (1)
2343#define ok_next(b, n) (1)
2344#define ok_cinuse(p) (1)
2345#define ok_pinuse(p) (1)
2346#endif /* !INSECURE */
2347
2348#if (FOOTERS && !INSECURE)
2349/* Check if (alleged) mstate m has expected magic field */
2350#define ok_magic(M) ((M)->magic == mparams.magic)
2351#else /* (FOOTERS && !INSECURE) */
2352#define ok_magic(M) (1)
2353#endif /* (FOOTERS && !INSECURE) */
2354
2355
2356/* In gcc, use __builtin_expect to minimize impact of checks */
2357#if !INSECURE
2358#if defined(__GNUC__) && __GNUC__ >= 3
2359#define RTCHECK(e) __builtin_expect(e, 1)
2360#else /* GNUC */
2361#define RTCHECK(e) (e)
2362#endif /* GNUC */
2363#else /* !INSECURE */
2364#define RTCHECK(e) (1)
2365#endif /* !INSECURE */
2366
2367/* macros to set up inuse chunks with or without footers */
2368
2369#if !FOOTERS
2370
2371#define mark_inuse_foot(M,p,s)
2372
2373/* Set cinuse bit and pinuse bit of next chunk */
2374#define set_inuse(M,p,s)\
2375 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2376 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2377
2378/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2379#define set_inuse_and_pinuse(M,p,s)\
2380 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2381 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2382
2383/* Set size, cinuse and pinuse bit of this chunk */
2384#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2385 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2386
2387#else /* FOOTERS */
2388
2389/* Set foot of inuse chunk to be xor of mstate and seed */
2390#define mark_inuse_foot(M,p,s)\
2391 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2392
2393#define get_mstate_for(p)\
2394 ((mstate)(((mchunkptr)((char*)(p) +\
2395 (chunksize(p))))->prev_foot ^ mparams.magic))
2396
2397#define set_inuse(M,p,s)\
2398 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2399 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2400 mark_inuse_foot(M,p,s))
2401
2402#define set_inuse_and_pinuse(M,p,s)\
2403 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2404 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2405 mark_inuse_foot(M,p,s))
2406
2407#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2408 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2409 mark_inuse_foot(M, p, s))
2410
2411#endif /* !FOOTERS */
2412
2413/* ---------------------------- setting mparams -------------------------- */
2414
2415/* Initialize mparams */
2416static int init_mparams(void) {
2417 if (mparams.page_size == 0) {
2418 size_t s;
2419
2420 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
2421 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
2422#if MORECORE_CONTIGUOUS
2423 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
2424#else /* MORECORE_CONTIGUOUS */
2425 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
2426#endif /* MORECORE_CONTIGUOUS */
2427
2428#if (FOOTERS && !INSECURE)
2429 {
2430#if USE_DEV_RANDOM
2431 int fd;
2432 unsigned char buf[sizeof(size_t)];
2433 /* Try to use /dev/urandom, else fall back on using time */
2434 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
2435 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
2436 s = *((size_t *) buf);
2437 close(fd);
2438 }
2439 else
2440#endif /* USE_DEV_RANDOM */
2441 s = (size_t)(time(0) ^ (size_t)0x55555555U);
2442
2443 s |= (size_t)8U; /* ensure nonzero */
2444 s &= ~(size_t)7U; /* improve chances of fault for bad values */
2445
2446 }
2447#else /* (FOOTERS && !INSECURE) */
2448 s = (size_t)0x58585858U;
2449#endif /* (FOOTERS && !INSECURE) */
2450 ACQUIRE_MAGIC_INIT_LOCK();
2451 if (mparams.magic == 0) {
2452 mparams.magic = s;
2453 /* Set up lock for main malloc area */
2454 INITIAL_LOCK(&gm->mutex);
2455 gm->mflags = mparams.default_mflags;
2456 }
2457 RELEASE_MAGIC_INIT_LOCK();
2458
2459#ifndef WIN32
2460 mparams.page_size = malloc_getpagesize;
2461 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
2462 DEFAULT_GRANULARITY : mparams.page_size);
2463#else /* WIN32 */
2464 {
2465 SYSTEM_INFO system_info;
2466 GetSystemInfo(&system_info);
2467 mparams.page_size = system_info.dwPageSize;
2468 mparams.granularity = system_info.dwAllocationGranularity;
2469 }
2470#endif /* WIN32 */
2471
2472 /* Sanity-check configuration:
2473 size_t must be unsigned and as wide as pointer type.
2474 ints must be at least 4 bytes.
2475 alignment must be at least 8.
2476 Alignment, min chunk size, and page size must all be powers of 2.
2477 */
2478 if ((sizeof(size_t) != sizeof(char*)) ||
2479 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
2480 (sizeof(int) < 4) ||
2481 (MALLOC_ALIGNMENT < (size_t)8U) ||
2482 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
2483 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
2484 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
2485 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
2486 ABORT;
2487 }
2488 return 0;
2489}
2490
2491/* support for mallopt */
2492static int change_mparam(int param_number, int value) {
2493 size_t val = (size_t)value;
2494 init_mparams();
2495 switch(param_number) {
2496 case M_TRIM_THRESHOLD:
2497 mparams.trim_threshold = val;
2498 return 1;
2499 case M_GRANULARITY:
2500 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
2501 mparams.granularity = val;
2502 return 1;
2503 }
2504 else
2505 return 0;
2506 case M_MMAP_THRESHOLD:
2507 mparams.mmap_threshold = val;
2508 return 1;
2509 default:
2510 return 0;
2511 }
2512}
2513
2514#if DEBUG
2515/* ------------------------- Debugging Support --------------------------- */
2516
2517/* Check properties of any chunk, whether free, inuse, mmapped etc */
2518static void do_check_any_chunk(mstate m, mchunkptr p) {
2519 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2520 assert(ok_address(m, p));
2521}
2522
2523/* Check properties of top chunk */
2524static void do_check_top_chunk(mstate m, mchunkptr p) {
2525 msegmentptr sp = segment_holding(m, (char*)p);
2526 size_t sz = chunksize(p);
2527 assert(sp != 0);
2528 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2529 assert(ok_address(m, p));
2530 assert(sz == m->topsize);
2531 assert(sz > 0);
2532 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2533 assert(pinuse(p));
2534 assert(!next_pinuse(p));
2535}
2536
2537/* Check properties of (inuse) mmapped chunks */
2538static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2539 size_t sz = chunksize(p);
2540 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2541 assert(is_mmapped(p));
2542 assert(use_mmap(m));
2543 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2544 assert(ok_address(m, p));
2545 assert(!is_small(sz));
2546 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2547 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2548 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2549}
2550
2551/* Check properties of inuse chunks */
2552static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2553 do_check_any_chunk(m, p);
2554 assert(cinuse(p));
2555 assert(next_pinuse(p));
2556 /* If not pinuse and not mmapped, previous chunk has OK offset */
2557 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2558 if (is_mmapped(p))
2559 do_check_mmapped_chunk(m, p);
2560}
2561
2562/* Check properties of free chunks */
2563static void do_check_free_chunk(mstate m, mchunkptr p) {
2564 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2565 mchunkptr next = chunk_plus_offset(p, sz);
2566 do_check_any_chunk(m, p);
2567 assert(!cinuse(p));
2568 assert(!next_pinuse(p));
2569 assert (!is_mmapped(p));
2570 if (p != m->dv && p != m->top) {
2571 if (sz >= MIN_CHUNK_SIZE) {
2572 assert((sz & CHUNK_ALIGN_MASK) == 0);
2573 assert(is_aligned(chunk2mem(p)));
2574 assert(next->prev_foot == sz);
2575 assert(pinuse(p));
2576 assert (next == m->top || cinuse(next));
2577 assert(p->fd->bk == p);
2578 assert(p->bk->fd == p);
2579 }
2580 else /* markers are always of size SIZE_T_SIZE */
2581 assert(sz == SIZE_T_SIZE);
2582 }
2583}
2584
2585/* Check properties of malloced chunks at the point they are malloced */
2586static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2587 if (mem != 0) {
2588 mchunkptr p = mem2chunk(mem);
2589 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2590 do_check_inuse_chunk(m, p);
2591 assert((sz & CHUNK_ALIGN_MASK) == 0);
2592 assert(sz >= MIN_CHUNK_SIZE);
2593 assert(sz >= s);
2594 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2595 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2596 }
2597}
2598
2599/* Check a tree and its subtrees. */
2600static void do_check_tree(mstate m, tchunkptr t) {
2601 tchunkptr head = 0;
2602 tchunkptr u = t;
2603 bindex_t tindex = t->index;
2604 size_t tsize = chunksize(t);
2605 bindex_t idx;
2606 compute_tree_index(tsize, idx);
2607 assert(tindex == idx);
2608 assert(tsize >= MIN_LARGE_SIZE);
2609 assert(tsize >= minsize_for_tree_index(idx));
2610 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2611
2612 do { /* traverse through chain of same-sized nodes */
2613 do_check_any_chunk(m, ((mchunkptr)u));
2614 assert(u->index == tindex);
2615 assert(chunksize(u) == tsize);
2616 assert(!cinuse(u));
2617 assert(!next_pinuse(u));
2618 assert(u->fd->bk == u);
2619 assert(u->bk->fd == u);
2620 if (u->parent == 0) {
2621 assert(u->child[0] == 0);
2622 assert(u->child[1] == 0);
2623 }
2624 else {
2625 assert(head == 0); /* only one node on chain has parent */
2626 head = u;
2627 assert(u->parent != u);
2628 assert (u->parent->child[0] == u ||
2629 u->parent->child[1] == u ||
2630 *((tbinptr*)(u->parent)) == u);
2631 if (u->child[0] != 0) {
2632 assert(u->child[0]->parent == u);
2633 assert(u->child[0] != u);
2634 do_check_tree(m, u->child[0]);
2635 }
2636 if (u->child[1] != 0) {
2637 assert(u->child[1]->parent == u);
2638 assert(u->child[1] != u);
2639 do_check_tree(m, u->child[1]);
2640 }
2641 if (u->child[0] != 0 && u->child[1] != 0) {
2642 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2643 }
2644 }
2645 u = u->fd;
2646 } while (u != t);
2647 assert(head != 0);
2648}
2649
2650/* Check all the chunks in a treebin. */
2651static void do_check_treebin(mstate m, bindex_t i) {
2652 tbinptr* tb = treebin_at(m, i);
2653 tchunkptr t = *tb;
2654 int empty = (m->treemap & (1U << i)) == 0;
2655 if (t == 0)
2656 assert(empty);
2657 if (!empty)
2658 do_check_tree(m, t);
2659}
2660
2661/* Check all the chunks in a smallbin. */
2662static void do_check_smallbin(mstate m, bindex_t i) {
2663 sbinptr b = smallbin_at(m, i);
2664 mchunkptr p = b->bk;
2665 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2666 if (p == b)
2667 assert(empty);
2668 if (!empty) {
2669 for (; p != b; p = p->bk) {
2670 size_t size = chunksize(p);
2671 mchunkptr q;
2672 /* each chunk claims to be free */
2673 do_check_free_chunk(m, p);
2674 /* chunk belongs in bin */
2675 assert(small_index(size) == i);
2676 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2677 /* chunk is followed by an inuse chunk */
2678 q = next_chunk(p);
2679 if (q->head != FENCEPOST_HEAD)
2680 do_check_inuse_chunk(m, q);
2681 }
2682 }
2683}
2684
2685/* Find x in a bin. Used in other check functions. */
2686static int bin_find(mstate m, mchunkptr x) {
2687 size_t size = chunksize(x);
2688 if (is_small(size)) {
2689 bindex_t sidx = small_index(size);
2690 sbinptr b = smallbin_at(m, sidx);
2691 if (smallmap_is_marked(m, sidx)) {
2692 mchunkptr p = b;
2693 do {
2694 if (p == x)
2695 return 1;
2696 } while ((p = p->fd) != b);
2697 }
2698 }
2699 else {
2700 bindex_t tidx;
2701 compute_tree_index(size, tidx);
2702 if (treemap_is_marked(m, tidx)) {
2703 tchunkptr t = *treebin_at(m, tidx);
2704 size_t sizebits = size << leftshift_for_tree_index(tidx);
2705 while (t != 0 && chunksize(t) != size) {
2706 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2707 sizebits <<= 1;
2708 }
2709 if (t != 0) {
2710 tchunkptr u = t;
2711 do {
2712 if (u == (tchunkptr)x)
2713 return 1;
2714 } while ((u = u->fd) != t);
2715 }
2716 }
2717 }
2718 return 0;
2719}
2720
2721/* Traverse each chunk and check it; return total */
2722static size_t traverse_and_check(mstate m) {
2723 size_t sum = 0;
2724 if (is_initialized(m)) {
2725 msegmentptr s = &m->seg;
2726 sum += m->topsize + TOP_FOOT_SIZE;
2727 while (s != 0) {
2728 mchunkptr q = align_as_chunk(s->base);
2729 mchunkptr lastq = 0;
2730 assert(pinuse(q));
2731 while (segment_holds(s, q) &&
2732 q != m->top && q->head != FENCEPOST_HEAD) {
2733 sum += chunksize(q);
2734 if (cinuse(q)) {
2735 assert(!bin_find(m, q));
2736 do_check_inuse_chunk(m, q);
2737 }
2738 else {
2739 assert(q == m->dv || bin_find(m, q));
2740 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2741 do_check_free_chunk(m, q);
2742 }
2743 lastq = q;
2744 q = next_chunk(q);
2745 }
2746 s = s->next;
2747 }
2748 }
2749 return sum;
2750}
2751
2752/* Check all properties of malloc_state. */
2753static void do_check_malloc_state(mstate m) {
2754 bindex_t i;
2755 size_t total;
2756 /* check bins */
2757 for (i = 0; i < NSMALLBINS; ++i)
2758 do_check_smallbin(m, i);
2759 for (i = 0; i < NTREEBINS; ++i)
2760 do_check_treebin(m, i);
2761
2762 if (m->dvsize != 0) { /* check dv chunk */
2763 do_check_any_chunk(m, m->dv);
2764 assert(m->dvsize == chunksize(m->dv));
2765 assert(m->dvsize >= MIN_CHUNK_SIZE);
2766 assert(bin_find(m, m->dv) == 0);
2767 }
2768
2769 if (m->top != 0) { /* check top chunk */
2770 do_check_top_chunk(m, m->top);
2771 assert(m->topsize == chunksize(m->top));
2772 assert(m->topsize > 0);
2773 assert(bin_find(m, m->top) == 0);
2774 }
2775
2776 total = traverse_and_check(m);
2777 assert(total <= m->footprint);
2778 assert(m->footprint <= m->max_footprint);
2779}
2780#endif /* DEBUG */
2781
2782/* ----------------------------- statistics ------------------------------ */
2783
2784#if !NO_MALLINFO
2785static struct mallinfo internal_mallinfo(mstate m) {
2786 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2787 if (!PREACTION(m)) {
2788 check_malloc_state(m);
2789 if (is_initialized(m)) {
2790 size_t nfree = SIZE_T_ONE; /* top always free */
2791 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2792 size_t sum = mfree;
2793 msegmentptr s = &m->seg;
2794 while (s != 0) {
2795 mchunkptr q = align_as_chunk(s->base);
2796 while (segment_holds(s, q) &&
2797 q != m->top && q->head != FENCEPOST_HEAD) {
2798 size_t sz = chunksize(q);
2799 sum += sz;
2800 if (!cinuse(q)) {
2801 mfree += sz;
2802 ++nfree;
2803 }
2804 q = next_chunk(q);
2805 }
2806 s = s->next;
2807 }
2808
2809 nm.arena = sum;
2810 nm.ordblks = nfree;
2811 nm.hblkhd = m->footprint - sum;
2812 nm.usmblks = m->max_footprint;
2813 nm.uordblks = m->footprint - mfree;
2814 nm.fordblks = mfree;
2815 nm.keepcost = m->topsize;
2816 }
2817
2818 POSTACTION(m);
2819 }
2820 return nm;
2821}
2822#endif /* !NO_MALLINFO */
2823
2824static void internal_malloc_stats(mstate m) {
2825 if (!PREACTION(m)) {
2826 size_t maxfp = 0;
2827 size_t fp = 0;
2828 size_t used = 0;
2829 check_malloc_state(m);
2830 if (is_initialized(m)) {
2831 msegmentptr s = &m->seg;
2832 maxfp = m->max_footprint;
2833 fp = m->footprint;
2834 used = fp - (m->topsize + TOP_FOOT_SIZE);
2835
2836 while (s != 0) {
2837 mchunkptr q = align_as_chunk(s->base);
2838 while (segment_holds(s, q) &&
2839 q != m->top && q->head != FENCEPOST_HEAD) {
2840 if (!cinuse(q))
2841 used -= chunksize(q);
2842 q = next_chunk(q);
2843 }
2844 s = s->next;
2845 }
2846 }
2847
2848 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2849 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2850 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2851
2852 POSTACTION(m);
2853 }
2854}
2855
2856/* ----------------------- Operations on smallbins ----------------------- */
2857
2858/*
2859 Various forms of linking and unlinking are defined as macros. Even
2860 the ones for trees, which are very long but have very short typical
2861 paths. This is ugly but reduces reliance on inlining support of
2862 compilers.
2863*/
2864
2865/* Link a free chunk into a smallbin */
2866#define insert_small_chunk(M, P, S) {\
2867 bindex_t I = small_index(S);\
2868 mchunkptr B = smallbin_at(M, I);\
2869 mchunkptr F = B;\
2870 assert(S >= MIN_CHUNK_SIZE);\
2871 if (!smallmap_is_marked(M, I))\
2872 mark_smallmap(M, I);\
2873 else if (RTCHECK(ok_address(M, B->fd)))\
2874 F = B->fd;\
2875 else {\
2876 CORRUPTION_ERROR_ACTION(M);\
2877 }\
2878 B->fd = P;\
2879 F->bk = P;\
2880 P->fd = F;\
2881 P->bk = B;\
2882}
2883
2884/* Unlink a chunk from a smallbin */
2885#define unlink_small_chunk(M, P, S) {\
2886 mchunkptr F = P->fd;\
2887 mchunkptr B = P->bk;\
2888 bindex_t I = small_index(S);\
2889 assert(P != B);\
2890 assert(P != F);\
2891 assert(chunksize(P) == small_index2size(I));\
2892 if (F == B)\
2893 clear_smallmap(M, I);\
2894 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2895 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2896 F->bk = B;\
2897 B->fd = F;\
2898 }\
2899 else {\
2900 CORRUPTION_ERROR_ACTION(M);\
2901 }\
2902}
2903
2904/* Unlink the first chunk from a smallbin */
2905#define unlink_first_small_chunk(M, B, P, I) {\
2906 mchunkptr F = P->fd;\
2907 assert(P != B);\
2908 assert(P != F);\
2909 assert(chunksize(P) == small_index2size(I));\
2910 if (B == F)\
2911 clear_smallmap(M, I);\
2912 else if (RTCHECK(ok_address(M, F))) {\
2913 B->fd = F;\
2914 F->bk = B;\
2915 }\
2916 else {\
2917 CORRUPTION_ERROR_ACTION(M);\
2918 }\
2919}
2920
2921/* Replace dv node, binning the old one */
2922/* Used only when dvsize known to be small */
2923#define replace_dv(M, P, S) {\
2924 size_t DVS = M->dvsize;\
2925 if (DVS != 0) {\
2926 mchunkptr DV = M->dv;\
2927 assert(is_small(DVS));\
2928 insert_small_chunk(M, DV, DVS);\
2929 }\
2930 M->dvsize = S;\
2931 M->dv = P;\
2932}
2933
2934/* ------------------------- Operations on trees ------------------------- */
2935
2936/* Insert chunk into tree */
2937#define insert_large_chunk(M, X, S) {\
2938 tbinptr* H;\
2939 bindex_t I;\
2940 compute_tree_index(S, I);\
2941 H = treebin_at(M, I);\
2942 X->index = I;\
2943 X->child[0] = X->child[1] = 0;\
2944 if (!treemap_is_marked(M, I)) {\
2945 mark_treemap(M, I);\
2946 *H = X;\
2947 X->parent = (tchunkptr)H;\
2948 X->fd = X->bk = X;\
2949 }\
2950 else {\
2951 tchunkptr T = *H;\
2952 size_t K = S << leftshift_for_tree_index(I);\
2953 for (;;) {\
2954 if (chunksize(T) != S) {\
2955 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2956 K <<= 1;\
2957 if (*C != 0)\
2958 T = *C;\
2959 else if (RTCHECK(ok_address(M, C))) {\
2960 *C = X;\
2961 X->parent = T;\
2962 X->fd = X->bk = X;\
2963 break;\
2964 }\
2965 else {\
2966 CORRUPTION_ERROR_ACTION(M);\
2967 break;\
2968 }\
2969 }\
2970 else {\
2971 tchunkptr F = T->fd;\
2972 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2973 T->fd = F->bk = X;\
2974 X->fd = F;\
2975 X->bk = T;\
2976 X->parent = 0;\
2977 break;\
2978 }\
2979 else {\
2980 CORRUPTION_ERROR_ACTION(M);\
2981 break;\
2982 }\
2983 }\
2984 }\
2985 }\
2986}
2987
2988/*
2989 Unlink steps:
2990
2991 1. If x is a chained node, unlink it from its same-sized fd/bk links
2992 and choose its bk node as its replacement.
2993 2. If x was the last node of its size, but not a leaf node, it must
2994 be replaced with a leaf node (not merely one with an open left or
2995 right), to make sure that lefts and rights of descendents
2996 correspond properly to bit masks. We use the rightmost descendent
2997 of x. We could use any other leaf, but this is easy to locate and
2998 tends to counteract removal of leftmosts elsewhere, and so keeps
2999 paths shorter than minimally guaranteed. This doesn't loop much
3000 because on average a node in a tree is near the bottom.
3001 3. If x is the base of a chain (i.e., has parent links) relink
3002 x's parent and children to x's replacement (or null if none).
3003*/
3004
3005#define unlink_large_chunk(M, X) {\
3006 tchunkptr XP = X->parent;\
3007 tchunkptr R;\
3008 if (X->bk != X) {\
3009 tchunkptr F = X->fd;\
3010 R = X->bk;\
3011 if (RTCHECK(ok_address(M, F))) {\
3012 F->bk = R;\
3013 R->fd = F;\
3014 }\
3015 else {\
3016 CORRUPTION_ERROR_ACTION(M);\
3017 }\
3018 }\
3019 else {\
3020 tchunkptr* RP;\
3021 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3022 ((R = *(RP = &(X->child[0]))) != 0)) {\
3023 tchunkptr* CP;\
3024 while ((*(CP = &(R->child[1])) != 0) ||\
3025 (*(CP = &(R->child[0])) != 0)) {\
3026 R = *(RP = CP);\
3027 }\
3028 if (RTCHECK(ok_address(M, RP)))\
3029 *RP = 0;\
3030 else {\
3031 CORRUPTION_ERROR_ACTION(M);\
3032 }\
3033 }\
3034 }\
3035 if (XP != 0) {\
3036 tbinptr* H = treebin_at(M, X->index);\
3037 if (X == *H) {\
3038 if ((*H = R) == 0) \
3039 clear_treemap(M, X->index);\
3040 }\
3041 else if (RTCHECK(ok_address(M, XP))) {\
3042 if (XP->child[0] == X) \
3043 XP->child[0] = R;\
3044 else \
3045 XP->child[1] = R;\
3046 }\
3047 else\
3048 CORRUPTION_ERROR_ACTION(M);\
3049 if (R != 0) {\
3050 if (RTCHECK(ok_address(M, R))) {\
3051 tchunkptr C0, C1;\
3052 R->parent = XP;\
3053 if ((C0 = X->child[0]) != 0) {\
3054 if (RTCHECK(ok_address(M, C0))) {\
3055 R->child[0] = C0;\
3056 C0->parent = R;\
3057 }\
3058 else\
3059 CORRUPTION_ERROR_ACTION(M);\
3060 }\
3061 if ((C1 = X->child[1]) != 0) {\
3062 if (RTCHECK(ok_address(M, C1))) {\
3063 R->child[1] = C1;\
3064 C1->parent = R;\
3065 }\
3066 else\
3067 CORRUPTION_ERROR_ACTION(M);\
3068 }\
3069 }\
3070 else\
3071 CORRUPTION_ERROR_ACTION(M);\
3072 }\
3073 }\
3074}
3075
3076/* Relays to large vs small bin operations */
3077
3078#define insert_chunk(M, P, S)\
3079 if (is_small(S)) insert_small_chunk(M, P, S)\
3080 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3081
3082#define unlink_chunk(M, P, S)\
3083 if (is_small(S)) unlink_small_chunk(M, P, S)\
3084 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3085
3086
3087/* Relays to internal calls to malloc/free from realloc, memalign etc */
3088
3089#if ONLY_MSPACES
3090#define internal_malloc(m, b) mspace_malloc(m, b)
3091#define internal_free(m, mem) mspace_free(m,mem);
3092#else /* ONLY_MSPACES */
3093#if MSPACES
3094#define internal_malloc(m, b)\
3095 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3096#define internal_free(m, mem)\
3097 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3098#else /* MSPACES */
3099#define internal_malloc(m, b) dlmalloc(b)
3100#define internal_free(m, mem) dlfree(mem)
3101#endif /* MSPACES */
3102#endif /* ONLY_MSPACES */
3103
3104/* ----------------------- Direct-mmapping chunks ----------------------- */
3105
3106/*
3107 Directly mmapped chunks are set up with an offset to the start of
3108 the mmapped region stored in the prev_foot field of the chunk. This
3109 allows reconstruction of the required argument to MUNMAP when freed,
3110 and also allows adjustment of the returned chunk to meet alignment
3111 requirements (especially in memalign). There is also enough space
3112 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3113 the PINUSE bit so frees can be checked.
3114*/
3115
3116/* Malloc using mmap */
3117static void* mmap_alloc(mstate m, size_t nb) {
3118 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3119 if (mmsize > nb) { /* Check for wrap around 0 */
3120 char* mm = (char*)(DIRECT_MMAP(mmsize));
3121 if (mm != CMFAIL) {
3122 size_t offset = align_offset(chunk2mem(mm));
3123 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3124 mchunkptr p = (mchunkptr)(mm + offset);
3125 p->prev_foot = offset | IS_MMAPPED_BIT;
3126 (p)->head = (psize|CINUSE_BIT);
3127 mark_inuse_foot(m, p, psize);
3128 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3129 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3130
3131 if (mm < m->least_addr)
3132 m->least_addr = mm;
3133 if ((m->footprint += mmsize) > m->max_footprint)
3134 m->max_footprint = m->footprint;
3135 assert(is_aligned(chunk2mem(p)));
3136 check_mmapped_chunk(m, p);
3137 return chunk2mem(p);
3138 }
3139 }
3140 return 0;
3141}
3142
3143/* Realloc using mmap */
3144static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3145 size_t oldsize = chunksize(oldp);
3146 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3147 return 0;
3148 /* Keep old chunk if big enough but not too big */
3149 if (oldsize >= nb + SIZE_T_SIZE &&
3150 (oldsize - nb) <= (mparams.granularity << 1))
3151 return oldp;
3152 else {
3153 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3154 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3155 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
3156 CHUNK_ALIGN_MASK);
3157 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3158 oldmmsize, newmmsize, 1);
3159 if (cp != CMFAIL) {
3160 mchunkptr newp = (mchunkptr)(cp + offset);
3161 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3162 newp->head = (psize|CINUSE_BIT);
3163 mark_inuse_foot(m, newp, psize);
3164 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3165 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3166
3167 if (cp < m->least_addr)
3168 m->least_addr = cp;
3169 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3170 m->max_footprint = m->footprint;
3171 check_mmapped_chunk(m, newp);
3172 return newp;
3173 }
3174 }
3175 return 0;
3176}
3177
3178/* -------------------------- mspace management -------------------------- */
3179
3180/* Initialize top chunk and its size */
3181static void init_top(mstate m, mchunkptr p, size_t psize) {
3182 /* Ensure alignment */
3183 size_t offset = align_offset(chunk2mem(p));
3184 p = (mchunkptr)((char*)p + offset);
3185 psize -= offset;
3186
3187 m->top = p;
3188 m->topsize = psize;
3189 p->head = psize | PINUSE_BIT;
3190 /* set size of fake trailing chunk holding overhead space only once */
3191 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3192 m->trim_check = mparams.trim_threshold; /* reset on each update */
3193}
3194
3195/* Initialize bins for a new mstate that is otherwise zeroed out */
3196static void init_bins(mstate m) {
3197 /* Establish circular links for smallbins */
3198 bindex_t i;
3199 for (i = 0; i < NSMALLBINS; ++i) {
3200 sbinptr bin = smallbin_at(m,i);
3201 bin->fd = bin->bk = bin;
3202 }
3203}
3204
3205#if PROCEED_ON_ERROR
3206
3207/* default corruption action */
3208static void reset_on_error(mstate m) {
3209 int i;
3210 ++malloc_corruption_error_count;
3211 /* Reinitialize fields to forget about all memory */
3212 m->smallbins = m->treebins = 0;
3213 m->dvsize = m->topsize = 0;
3214 m->seg.base = 0;
3215 m->seg.size = 0;
3216 m->seg.next = 0;
3217 m->top = m->dv = 0;
3218 for (i = 0; i < NTREEBINS; ++i)
3219 *treebin_at(m, i) = 0;
3220 init_bins(m);
3221}
3222#endif /* PROCEED_ON_ERROR */
3223
3224/* Allocate chunk and prepend remainder with chunk in successor base. */
3225static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3226 size_t nb) {
3227 mchunkptr p = align_as_chunk(newbase);
3228 mchunkptr oldfirst = align_as_chunk(oldbase);
3229 size_t psize = (char*)oldfirst - (char*)p;
3230 mchunkptr q = chunk_plus_offset(p, nb);
3231 size_t qsize = psize - nb;
3232 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3233
3234 assert((char*)oldfirst > (char*)q);
3235 assert(pinuse(oldfirst));
3236 assert(qsize >= MIN_CHUNK_SIZE);
3237
3238 /* consolidate remainder with first chunk of old base */
3239 if (oldfirst == m->top) {
3240 size_t tsize = m->topsize += qsize;
3241 m->top = q;
3242 q->head = tsize | PINUSE_BIT;
3243 check_top_chunk(m, q);
3244 }
3245 else if (oldfirst == m->dv) {
3246 size_t dsize = m->dvsize += qsize;
3247 m->dv = q;
3248 set_size_and_pinuse_of_free_chunk(q, dsize);
3249 }
3250 else {
3251 if (!cinuse(oldfirst)) {
3252 size_t nsize = chunksize(oldfirst);
3253 unlink_chunk(m, oldfirst, nsize);
3254 oldfirst = chunk_plus_offset(oldfirst, nsize);
3255 qsize += nsize;
3256 }
3257 set_free_with_pinuse(q, qsize, oldfirst);
3258 insert_chunk(m, q, qsize);
3259 check_free_chunk(m, q);
3260 }
3261
3262 check_malloced_chunk(m, chunk2mem(p), nb);
3263 return chunk2mem(p);
3264}
3265
3266
3267/* Add a segment to hold a new noncontiguous region */
3268static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3269 /* Determine locations and sizes of segment, fenceposts, old top */
3270 char* old_top = (char*)m->top;
3271 msegmentptr oldsp = segment_holding(m, old_top);
3272 char* old_end = oldsp->base + oldsp->size;
3273 size_t ssize = pad_request(sizeof(struct malloc_segment));
3274 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3275 size_t offset = align_offset(chunk2mem(rawsp));
3276 char* asp = rawsp + offset;
3277 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3278 mchunkptr sp = (mchunkptr)csp;
3279 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3280 mchunkptr tnext = chunk_plus_offset(sp, ssize);
3281 mchunkptr p = tnext;
3282 int nfences = 0;
3283
3284 /* reset top to new space */
3285 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3286
3287 /* Set up segment record */
3288 assert(is_aligned(ss));
3289 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3290 *ss = m->seg; /* Push current record */
3291 m->seg.base = tbase;
3292 m->seg.size = tsize;
3293 m->seg.sflags = mmapped;
3294 m->seg.next = ss;
3295
3296 /* Insert trailing fenceposts */
3297 for (;;) {
3298 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3299 p->head = FENCEPOST_HEAD;
3300 ++nfences;
3301 if ((char*)(&(nextp->head)) < old_end)
3302 p = nextp;
3303 else
3304 break;
3305 }
3306 assert(nfences >= 2);
3307
3308 /* Insert the rest of old top into a bin as an ordinary free chunk */
3309 if (csp != old_top) {
3310 mchunkptr q = (mchunkptr)old_top;
3311 size_t psize = csp - old_top;
3312 mchunkptr tn = chunk_plus_offset(q, psize);
3313 set_free_with_pinuse(q, psize, tn);
3314 insert_chunk(m, q, psize);
3315 }
3316
3317 check_top_chunk(m, m->top);
3318}
3319
3320/* -------------------------- System allocation -------------------------- */
3321
3322/* Get memory from system using MORECORE or MMAP */
3323static void* sys_alloc(mstate m, size_t nb) {
3324 char* tbase = CMFAIL;
3325 size_t tsize = 0;
3326 flag_t mmap_flag = 0;
3327
3328 init_mparams();
3329
3330 /* Directly map large chunks */
3331 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3332 void* mem = mmap_alloc(m, nb);
3333 if (mem != 0)
3334 return mem;
3335 }
3336
3337 /*
3338 Try getting memory in any of three ways (in most-preferred to
3339 least-preferred order):
3340 1. A call to MORECORE that can normally contiguously extend memory.
3341 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3342 or main space is mmapped or a previous contiguous call failed)
3343 2. A call to MMAP new space (disabled if not HAVE_MMAP).
3344 Note that under the default settings, if MORECORE is unable to
3345 fulfill a request, and HAVE_MMAP is true, then mmap is
3346 used as a noncontiguous system allocator. This is a useful backup
3347 strategy for systems with holes in address spaces -- in this case
3348 sbrk cannot contiguously expand the heap, but mmap may be able to
3349 find space.
3350 3. A call to MORECORE that cannot usually contiguously extend memory.
3351 (disabled if not HAVE_MORECORE)
3352 */
3353
3354 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3355 char* br = CMFAIL;
3356 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3357 size_t asize = 0;
3358 ACQUIRE_MORECORE_LOCK();
3359
3360 if (ss == 0) { /* First time through or recovery */
3361 char* base = (char*)CALL_MORECORE(0);
3362 if (base != CMFAIL) {
3363 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3364 /* Adjust to end on a page boundary */
3365 if (!is_page_aligned(base))
3366 asize += (page_align((size_t)base) - (size_t)base);
3367 /* Can't call MORECORE if size is negative when treated as signed */
3368 if (asize < HALF_MAX_SIZE_T &&
3369 (br = (char*)(CALL_MORECORE(asize))) == base) {
3370 tbase = base;
3371 tsize = asize;
3372 }
3373 }
3374 }
3375 else {
3376 /* Subtract out existing available top space from MORECORE request. */
3377 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
3378 /* Use mem here only if it did continuously extend old space */
3379 if (asize < HALF_MAX_SIZE_T &&
3380 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3381 tbase = br;
3382 tsize = asize;
3383 }
3384 }
3385
3386 if (tbase == CMFAIL) { /* Cope with partial failure */
3387 if (br != CMFAIL) { /* Try to use/extend the space we did get */
3388 if (asize < HALF_MAX_SIZE_T &&
3389 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
3390 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
3391 if (esize < HALF_MAX_SIZE_T) {
3392 char* end = (char*)CALL_MORECORE(esize);
3393 if (end != CMFAIL)
3394 asize += esize;
3395 else { /* Can't use; try to release */
3396 CALL_MORECORE(-asize);
3397 br = CMFAIL;
3398 }
3399 }
3400 }
3401 }
3402 if (br != CMFAIL) { /* Use the space we did get */
3403 tbase = br;
3404 tsize = asize;
3405 }
3406 else
3407 disable_contiguous(m); /* Don't try contiguous path in the future */
3408 }
3409
3410 RELEASE_MORECORE_LOCK();
3411 }
3412
3413 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
3414 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
3415 size_t rsize = granularity_align(req);
3416 if (rsize > nb) { /* Fail if wraps around zero */
3417 char* mp = (char*)(CALL_MMAP(rsize));
3418 if (mp != CMFAIL) {
3419 tbase = mp;
3420 tsize = rsize;
3421 mmap_flag = IS_MMAPPED_BIT;
3422 }
3423 }
3424 }
3425
3426 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
3427 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3428 if (asize < HALF_MAX_SIZE_T) {
3429 char* br = CMFAIL;
3430 char* end = CMFAIL;
3431 ACQUIRE_MORECORE_LOCK();
3432 br = (char*)(CALL_MORECORE(asize));
3433 end = (char*)(CALL_MORECORE(0));
3434 RELEASE_MORECORE_LOCK();
3435 if (br != CMFAIL && end != CMFAIL && br < end) {
3436 size_t ssize = end - br;
3437 if (ssize > nb + TOP_FOOT_SIZE) {
3438 tbase = br;
3439 tsize = ssize;
3440 }
3441 }
3442 }
3443 }
3444
3445 if (tbase != CMFAIL) {
3446
3447 if ((m->footprint += tsize) > m->max_footprint)
3448 m->max_footprint = m->footprint;
3449
3450 if (!is_initialized(m)) { /* first-time initialization */
3451 m->seg.base = m->least_addr = tbase;
3452 m->seg.size = tsize;
3453 m->seg.sflags = mmap_flag;
3454 m->magic = mparams.magic;
3455 init_bins(m);
3456 if (is_global(m))
3457 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3458 else {
3459 /* Offset top by embedded malloc_state */
3460 mchunkptr mn = next_chunk(mem2chunk(m));
3461 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
3462 }
3463 }
3464
3465 else {
3466 /* Try to merge with an existing segment */
3467 msegmentptr sp = &m->seg;
3468 while (sp != 0 && tbase != sp->base + sp->size)
3469 sp = sp->next;
3470 if (sp != 0 &&
3471 !is_extern_segment(sp) &&
3472 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
3473 segment_holds(sp, m->top)) { /* append */
3474 sp->size += tsize;
3475 init_top(m, m->top, m->topsize + tsize);
3476 }
3477 else {
3478 if (tbase < m->least_addr)
3479 m->least_addr = tbase;
3480 sp = &m->seg;
3481 while (sp != 0 && sp->base != tbase + tsize)
3482 sp = sp->next;
3483 if (sp != 0 &&
3484 !is_extern_segment(sp) &&
3485 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
3486 char* oldbase = sp->base;
3487 sp->base = tbase;
3488 sp->size += tsize;
3489 return prepend_alloc(m, tbase, oldbase, nb);
3490 }
3491 else
3492 add_segment(m, tbase, tsize, mmap_flag);
3493 }
3494 }
3495
3496 if (nb < m->topsize) { /* Allocate from new or extended top space */
3497 size_t rsize = m->topsize -= nb;
3498 mchunkptr p = m->top;
3499 mchunkptr r = m->top = chunk_plus_offset(p, nb);
3500 r->head = rsize | PINUSE_BIT;
3501 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3502 check_top_chunk(m, m->top);
3503 check_malloced_chunk(m, chunk2mem(p), nb);
3504 return chunk2mem(p);
3505 }
3506 }
3507
3508 MALLOC_FAILURE_ACTION;
3509 return 0;
3510}
3511
3512/* ----------------------- system deallocation -------------------------- */
3513
3514/* Unmap and unlink any mmapped segments that don't contain used chunks */
3515static size_t release_unused_segments(mstate m) {
3516 size_t released = 0;
3517 msegmentptr pred = &m->seg;
3518 msegmentptr sp = pred->next;
3519 while (sp != 0) {
3520 char* base = sp->base;
3521 size_t size = sp->size;
3522 msegmentptr next = sp->next;
3523 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
3524 mchunkptr p = align_as_chunk(base);
3525 size_t psize = chunksize(p);
3526 /* Can unmap if first chunk holds entire segment and not pinned */
3527 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
3528 tchunkptr tp = (tchunkptr)p;
3529 assert(segment_holds(sp, (char*)sp));
3530 if (p == m->dv) {
3531 m->dv = 0;
3532 m->dvsize = 0;
3533 }
3534 else {
3535 unlink_large_chunk(m, tp);
3536 }
3537 if (CALL_MUNMAP(base, size) == 0) {
3538 released += size;
3539 m->footprint -= size;
3540 /* unlink obsoleted record */
3541 sp = pred;
3542 sp->next = next;
3543 }
3544 else { /* back out if cannot unmap */
3545 insert_large_chunk(m, tp, psize);
3546 }
3547 }
3548 }
3549 pred = sp;
3550 sp = next;
3551 }
3552 return released;
3553}
3554
3555static int sys_trim(mstate m, size_t pad) {
3556 size_t released = 0;
3557 if (pad < MAX_REQUEST && is_initialized(m)) {
3558 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3559
3560 if (m->topsize > pad) {
3561 /* Shrink top space in granularity-size units, keeping at least one */
3562 size_t unit = mparams.granularity;
3563 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3564 SIZE_T_ONE) * unit;
3565 msegmentptr sp = segment_holding(m, (char*)m->top);
3566
3567 if (!is_extern_segment(sp)) {
3568 if (is_mmapped_segment(sp)) {
3569 if (HAVE_MMAP &&
3570 sp->size >= extra &&
3571 !has_segment_link(m, sp)) { /* can't shrink if pinned */
3572 size_t newsize = sp->size - extra;
3573 /* Prefer mremap, fall back to munmap */
3574 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3575 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3576 released = extra;
3577 }
3578 }
3579 }
3580 else if (HAVE_MORECORE) {
3581 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3582 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3583 ACQUIRE_MORECORE_LOCK();
3584 {
3585 /* Make sure end of memory is where we last set it. */
3586 char* old_br = (char*)(CALL_MORECORE(0));
3587 if (old_br == sp->base + sp->size) {
3588 char* rel_br = (char*)(CALL_MORECORE(-extra));
3589 char* new_br = (char*)(CALL_MORECORE(0));
3590 if (rel_br != CMFAIL && new_br < old_br)
3591 released = old_br - new_br;
3592 }
3593 }
3594 RELEASE_MORECORE_LOCK();
3595 }
3596 }
3597
3598 if (released != 0) {
3599 sp->size -= released;
3600 m->footprint -= released;
3601 init_top(m, m->top, m->topsize - released);
3602 check_top_chunk(m, m->top);
3603 }
3604 }
3605
3606 /* Unmap any unused mmapped segments */
3607 if (HAVE_MMAP)
3608 released += release_unused_segments(m);
3609
3610 /* On failure, disable autotrim to avoid repeated failed future calls */
3611 if (released == 0)
3612 m->trim_check = MAX_SIZE_T;
3613 }
3614
3615 return (released != 0)? 1 : 0;
3616}
3617
3618/* ---------------------------- malloc support --------------------------- */
3619
3620/* allocate a large request from the best fitting chunk in a treebin */
3621static void* tmalloc_large(mstate m, size_t nb) {
3622 tchunkptr v = 0;
3623 size_t rsize = -nb; /* Unsigned negation */
3624 tchunkptr t;
3625 bindex_t idx;
3626 compute_tree_index(nb, idx);
3627
3628 if ((t = *treebin_at(m, idx)) != 0) {
3629 /* Traverse tree for this bin looking for node with size == nb */
3630 size_t sizebits = nb << leftshift_for_tree_index(idx);
3631 tchunkptr rst = 0; /* The deepest untaken right subtree */
3632 for (;;) {
3633 tchunkptr rt;
3634 size_t trem = chunksize(t) - nb;
3635 if (trem < rsize) {
3636 v = t;
3637 if ((rsize = trem) == 0)
3638 break;
3639 }
3640 rt = t->child[1];
3641 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3642 if (rt != 0 && rt != t)
3643 rst = rt;
3644 if (t == 0) {
3645 t = rst; /* set t to least subtree holding sizes > nb */
3646 break;
3647 }
3648 sizebits <<= 1;
3649 }
3650 }
3651
3652 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3653 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3654 if (leftbits != 0) {
3655 bindex_t i;
3656 binmap_t leastbit = least_bit(leftbits);
3657 compute_bit2idx(leastbit, i);
3658 t = *treebin_at(m, i);
3659 }
3660 }
3661
3662 while (t != 0) { /* find smallest of tree or subtree */
3663 size_t trem = chunksize(t) - nb;
3664 if (trem < rsize) {
3665 rsize = trem;
3666 v = t;
3667 }
3668 t = leftmost_child(t);
3669 }
3670
3671 /* If dv is a better fit, return 0 so malloc will use it */
3672 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3673 if (RTCHECK(ok_address(m, v))) { /* split */
3674 mchunkptr r = chunk_plus_offset(v, nb);
3675 assert(chunksize(v) == rsize + nb);
3676 if (RTCHECK(ok_next(v, r))) {
3677 unlink_large_chunk(m, v);
3678 if (rsize < MIN_CHUNK_SIZE)
3679 set_inuse_and_pinuse(m, v, (rsize + nb));
3680 else {
3681 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3682 set_size_and_pinuse_of_free_chunk(r, rsize);
3683 insert_chunk(m, r, rsize);
3684 }
3685 return chunk2mem(v);
3686 }
3687 }
3688 CORRUPTION_ERROR_ACTION(m);
3689 }
3690 return 0;
3691}
3692
3693/* allocate a small request from the best fitting chunk in a treebin */
3694static void* tmalloc_small(mstate m, size_t nb) {
3695 tchunkptr t, v;
3696 size_t rsize;
3697 bindex_t i;
3698 binmap_t leastbit = least_bit(m->treemap);
3699 compute_bit2idx(leastbit, i);
3700
3701 v = t = *treebin_at(m, i);
3702 rsize = chunksize(t) - nb;
3703
3704 while ((t = leftmost_child(t)) != 0) {
3705 size_t trem = chunksize(t) - nb;
3706 if (trem < rsize) {
3707 rsize = trem;
3708 v = t;
3709 }
3710 }
3711
3712 if (RTCHECK(ok_address(m, v))) {
3713 mchunkptr r = chunk_plus_offset(v, nb);
3714 assert(chunksize(v) == rsize + nb);
3715 if (RTCHECK(ok_next(v, r))) {
3716 unlink_large_chunk(m, v);
3717 if (rsize < MIN_CHUNK_SIZE)
3718 set_inuse_and_pinuse(m, v, (rsize + nb));
3719 else {
3720 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3721 set_size_and_pinuse_of_free_chunk(r, rsize);
3722 replace_dv(m, r, rsize);
3723 }
3724 return chunk2mem(v);
3725 }
3726 }
3727
3728 CORRUPTION_ERROR_ACTION(m);
3729 return 0;
3730}
3731
3732/* --------------------------- realloc support --------------------------- */
3733
3734static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3735 if (bytes >= MAX_REQUEST) {
3736 MALLOC_FAILURE_ACTION;
3737 return 0;
3738 }
3739 if (!PREACTION(m)) {
3740 mchunkptr oldp = mem2chunk(oldmem);
3741 size_t oldsize = chunksize(oldp);
3742 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3743 mchunkptr newp = 0;
3744 void* extra = 0;
3745
3746 /* Try to either shrink or extend into top. Else malloc-copy-free */
3747
3748 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3749 ok_next(oldp, next) && ok_pinuse(next))) {
3750 size_t nb = request2size(bytes);
3751 if (is_mmapped(oldp))
3752 newp = mmap_resize(m, oldp, nb);
3753 else if (oldsize >= nb) { /* already big enough */
3754 size_t rsize = oldsize - nb;
3755 newp = oldp;
3756 if (rsize >= MIN_CHUNK_SIZE) {
3757 mchunkptr remainder = chunk_plus_offset(newp, nb);
3758 set_inuse(m, newp, nb);
3759 set_inuse(m, remainder, rsize);
3760 extra = chunk2mem(remainder);
3761 }
3762 }
3763 else if (next == m->top && oldsize + m->topsize > nb) {
3764 /* Expand into top */
3765 size_t newsize = oldsize + m->topsize;
3766 size_t newtopsize = newsize - nb;
3767 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3768 set_inuse(m, oldp, nb);
3769 newtop->head = newtopsize |PINUSE_BIT;
3770 m->top = newtop;
3771 m->topsize = newtopsize;
3772 newp = oldp;
3773 }
3774 }
3775 else {
3776 USAGE_ERROR_ACTION(m, oldmem);
3777 POSTACTION(m);
3778 return 0;
3779 }
3780
3781 POSTACTION(m);
3782
3783 if (newp != 0) {
3784 if (extra != 0) {
3785 internal_free(m, extra);
3786 }
3787 check_inuse_chunk(m, newp);
3788 return chunk2mem(newp);
3789 }
3790 else {
3791 void* newmem = internal_malloc(m, bytes);
3792 if (newmem != 0) {
3793 size_t oc = oldsize - overhead_for(oldp);
3794 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3795 internal_free(m, oldmem);
3796 }
3797 return newmem;
3798 }
3799 }
3800 return 0;
3801}
3802
3803/* --------------------------- memalign support -------------------------- */
3804
3805static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3806 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3807 return internal_malloc(m, bytes);
3808 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3809 alignment = MIN_CHUNK_SIZE;
3810 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3811 size_t a = MALLOC_ALIGNMENT << 1;
3812 while (a < alignment) a <<= 1;
3813 alignment = a;
3814 }
3815
3816 if (bytes >= MAX_REQUEST - alignment) {
3817 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3818 MALLOC_FAILURE_ACTION;
3819 }
3820 }
3821 else {
3822 size_t nb = request2size(bytes);
3823 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3824 char* mem = (char*)internal_malloc(m, req);
3825 if (mem != 0) {
3826 void* leader = 0;
3827 void* trailer = 0;
3828 mchunkptr p = mem2chunk(mem);
3829
3830 if (PREACTION(m)) return 0;
3831 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3832 /*
3833 Find an aligned spot inside chunk. Since we need to give
3834 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3835 the first calculation places us at a spot with less than
3836 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3837 We've allocated enough total room so that this is always
3838 possible.
3839 */
3840 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3841 alignment -
3842 SIZE_T_ONE)) &
3843 -alignment));
3844 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3845 br : br+alignment;
3846 mchunkptr newp = (mchunkptr)pos;
3847 size_t leadsize = pos - (char*)(p);
3848 size_t newsize = chunksize(p) - leadsize;
3849
3850 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3851 newp->prev_foot = p->prev_foot + leadsize;
3852 newp->head = (newsize|CINUSE_BIT);
3853 }
3854 else { /* Otherwise, give back leader, use the rest */
3855 set_inuse(m, newp, newsize);
3856 set_inuse(m, p, leadsize);
3857 leader = chunk2mem(p);
3858 }
3859 p = newp;
3860 }
3861
3862 /* Give back spare room at the end */
3863 if (!is_mmapped(p)) {
3864 size_t size = chunksize(p);
3865 if (size > nb + MIN_CHUNK_SIZE) {
3866 size_t remainder_size = size - nb;
3867 mchunkptr remainder = chunk_plus_offset(p, nb);
3868 set_inuse(m, p, nb);
3869 set_inuse(m, remainder, remainder_size);
3870 trailer = chunk2mem(remainder);
3871 }
3872 }
3873
3874 assert (chunksize(p) >= nb);
3875 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3876 check_inuse_chunk(m, p);
3877 POSTACTION(m);
3878 if (leader != 0) {
3879 internal_free(m, leader);
3880 }
3881 if (trailer != 0) {
3882 internal_free(m, trailer);
3883 }
3884 return chunk2mem(p);
3885 }
3886 }
3887 return 0;
3888}
3889
3890/* ------------------------ comalloc/coalloc support --------------------- */
3891
3892static void** ialloc(mstate m,
3893 size_t n_elements,
3894 size_t* sizes,
3895 int opts,
3896 void* chunks[]) {
3897 /*
3898 This provides common support for independent_X routines, handling
3899 all of the combinations that can result.
3900
3901 The opts arg has:
3902 bit 0 set if all elements are same size (using sizes[0])
3903 bit 1 set if elements should be zeroed
3904 */
3905
3906 size_t element_size; /* chunksize of each element, if all same */
3907 size_t contents_size; /* total size of elements */
3908 size_t array_size; /* request size of pointer array */
3909 void* mem; /* malloced aggregate space */
3910 mchunkptr p; /* corresponding chunk */
3911 size_t remainder_size; /* remaining bytes while splitting */
3912 void** marray; /* either "chunks" or malloced ptr array */
3913 mchunkptr array_chunk; /* chunk for malloced ptr array */
3914 flag_t was_enabled; /* to disable mmap */
3915 size_t size;
3916 size_t i;
3917
3918 /* compute array length, if needed */
3919 if (chunks != 0) {
3920 if (n_elements == 0)
3921 return chunks; /* nothing to do */
3922 marray = chunks;
3923 array_size = 0;
3924 }
3925 else {
3926 /* if empty req, must still return chunk representing empty array */
3927 if (n_elements == 0)
3928 return (void**)internal_malloc(m, 0);
3929 marray = 0;
3930 array_size = request2size(n_elements * (sizeof(void*)));
3931 }
3932
3933 /* compute total element size */
3934 if (opts & 0x1) { /* all-same-size */
3935 element_size = request2size(*sizes);
3936 contents_size = n_elements * element_size;
3937 }
3938 else { /* add up all the sizes */
3939 element_size = 0;
3940 contents_size = 0;
3941 for (i = 0; i != n_elements; ++i)
3942 contents_size += request2size(sizes[i]);
3943 }
3944
3945 size = contents_size + array_size;
3946
3947 /*
3948 Allocate the aggregate chunk. First disable direct-mmapping so
3949 malloc won't use it, since we would not be able to later
3950 free/realloc space internal to a segregated mmap region.
3951 */
3952 was_enabled = use_mmap(m);
3953 disable_mmap(m);
3954 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3955 if (was_enabled)
3956 enable_mmap(m);
3957 if (mem == 0)
3958 return 0;
3959
3960 if (PREACTION(m)) return 0;
3961 p = mem2chunk(mem);
3962 remainder_size = chunksize(p);
3963
3964 assert(!is_mmapped(p));
3965
3966 if (opts & 0x2) { /* optionally clear the elements */
3967 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3968 }
3969
3970 /* If not provided, allocate the pointer array as final part of chunk */
3971 if (marray == 0) {
3972 size_t array_chunk_size;
3973 array_chunk = chunk_plus_offset(p, contents_size);
3974 array_chunk_size = remainder_size - contents_size;
3975 marray = (void**) (chunk2mem(array_chunk));
3976 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3977 remainder_size = contents_size;
3978 }
3979
3980 /* split out elements */
3981 for (i = 0; ; ++i) {
3982 marray[i] = chunk2mem(p);
3983 if (i != n_elements-1) {
3984 if (element_size != 0)
3985 size = element_size;
3986 else
3987 size = request2size(sizes[i]);
3988 remainder_size -= size;
3989 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3990 p = chunk_plus_offset(p, size);
3991 }
3992 else { /* the final element absorbs any overallocation slop */
3993 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3994 break;
3995 }
3996 }
3997
3998#if DEBUG
3999 if (marray != chunks) {
4000 /* final element must have exactly exhausted chunk */
4001 if (element_size != 0) {
4002 assert(remainder_size == element_size);
4003 }
4004 else {
4005 assert(remainder_size == request2size(sizes[i]));
4006 }
4007 check_inuse_chunk(m, mem2chunk(marray));
4008 }
4009 for (i = 0; i != n_elements; ++i)
4010 check_inuse_chunk(m, mem2chunk(marray[i]));
4011
4012#endif /* DEBUG */
4013
4014 POSTACTION(m);
4015 return marray;
4016}
4017
4018
4019/* -------------------------- public routines ---------------------------- */
4020
4021#if !ONLY_MSPACES
4022
4023void* dlmalloc(size_t bytes) {
4024 /*
4025 Basic algorithm:
4026 If a small request (< 256 bytes minus per-chunk overhead):
4027 1. If one exists, use a remainderless chunk in associated smallbin.
4028 (Remainderless means that there are too few excess bytes to
4029 represent as a chunk.)
4030 2. If it is big enough, use the dv chunk, which is normally the
4031 chunk adjacent to the one used for the most recent small request.
4032 3. If one exists, split the smallest available chunk in a bin,
4033 saving remainder in dv.
4034 4. If it is big enough, use the top chunk.
4035 5. If available, get memory from system and use it
4036 Otherwise, for a large request:
4037 1. Find the smallest available binned chunk that fits, and use it
4038 if it is better fitting than dv chunk, splitting if necessary.
4039 2. If better fitting than any binned chunk, use the dv chunk.
4040 3. If it is big enough, use the top chunk.
4041 4. If request size >= mmap threshold, try to directly mmap this chunk.
4042 5. If available, get memory from system and use it
4043
4044 The ugly goto's here ensure that postaction occurs along all paths.
4045 */
4046
4047 if (!PREACTION(gm)) {
4048 void* mem;
4049 size_t nb;
4050 if (bytes <= MAX_SMALL_REQUEST) {
4051 bindex_t idx;
4052 binmap_t smallbits;
4053 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4054 idx = small_index(nb);
4055 smallbits = gm->smallmap >> idx;
4056
4057 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4058 mchunkptr b, p;
4059 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4060 b = smallbin_at(gm, idx);
4061 p = b->fd;
4062 assert(chunksize(p) == small_index2size(idx));
4063 unlink_first_small_chunk(gm, b, p, idx);
4064 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4065 mem = chunk2mem(p);
4066 check_malloced_chunk(gm, mem, nb);
4067 goto postaction;
4068 }
4069
4070 else if (nb > gm->dvsize) {
4071 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4072 mchunkptr b, p, r;
4073 size_t rsize;
4074 bindex_t i;
4075 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4076 binmap_t leastbit = least_bit(leftbits);
4077 compute_bit2idx(leastbit, i);
4078 b = smallbin_at(gm, i);
4079 p = b->fd;
4080 assert(chunksize(p) == small_index2size(i));
4081 unlink_first_small_chunk(gm, b, p, i);
4082 rsize = small_index2size(i) - nb;
4083 /* Fit here cannot be remainderless if 4byte sizes */
4084 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4085 set_inuse_and_pinuse(gm, p, small_index2size(i));
4086 else {
4087 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4088 r = chunk_plus_offset(p, nb);
4089 set_size_and_pinuse_of_free_chunk(r, rsize);
4090 replace_dv(gm, r, rsize);
4091 }
4092 mem = chunk2mem(p);
4093 check_malloced_chunk(gm, mem, nb);
4094 goto postaction;
4095 }
4096
4097 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4098 check_malloced_chunk(gm, mem, nb);
4099 goto postaction;
4100 }
4101 }
4102 }
4103 else if (bytes >= MAX_REQUEST)
4104 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4105 else {
4106 nb = pad_request(bytes);
4107 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4108 check_malloced_chunk(gm, mem, nb);
4109 goto postaction;
4110 }
4111 }
4112
4113 if (nb <= gm->dvsize) {
4114 size_t rsize = gm->dvsize - nb;
4115 mchunkptr p = gm->dv;
4116 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4117 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4118 gm->dvsize = rsize;
4119 set_size_and_pinuse_of_free_chunk(r, rsize);
4120 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4121 }
4122 else { /* exhaust dv */
4123 size_t dvs = gm->dvsize;
4124 gm->dvsize = 0;
4125 gm->dv = 0;
4126 set_inuse_and_pinuse(gm, p, dvs);
4127 }
4128 mem = chunk2mem(p);
4129 check_malloced_chunk(gm, mem, nb);
4130 goto postaction;
4131 }
4132
4133 else if (nb < gm->topsize) { /* Split top */
4134 size_t rsize = gm->topsize -= nb;
4135 mchunkptr p = gm->top;
4136 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4137 r->head = rsize | PINUSE_BIT;
4138 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4139 mem = chunk2mem(p);
4140 check_top_chunk(gm, gm->top);
4141 check_malloced_chunk(gm, mem, nb);
4142 goto postaction;
4143 }
4144
4145 mem = sys_alloc(gm, nb);
4146
4147 postaction:
4148 POSTACTION(gm);
4149 return mem;
4150 }
4151
4152 return 0;
4153}
4154
4155void dlfree(void* mem) {
4156 /*
4157 Consolidate freed chunks with preceeding or succeeding bordering
4158 free chunks, if they exist, and then place in a bin. Intermixed
4159 with special cases for top, dv, mmapped chunks, and usage errors.
4160 */
4161
4162 if (mem != 0) {
4163 mchunkptr p = mem2chunk(mem);
4164#if FOOTERS
4165 mstate fm = get_mstate_for(p);
4166 if (!ok_magic(fm)) {
4167 USAGE_ERROR_ACTION(fm, p);
4168 return;
4169 }
4170#else /* FOOTERS */
4171#define fm gm
4172#endif /* FOOTERS */
4173 if (!PREACTION(fm)) {
4174 check_inuse_chunk(fm, p);
4175 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4176 size_t psize = chunksize(p);
4177 mchunkptr next = chunk_plus_offset(p, psize);
4178 if (!pinuse(p)) {
4179 size_t prevsize = p->prev_foot;
4180 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4181 prevsize &= ~IS_MMAPPED_BIT;
4182 psize += prevsize + MMAP_FOOT_PAD;
4183 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4184 fm->footprint -= psize;
4185 goto postaction;
4186 }
4187 else {
4188 mchunkptr prev = chunk_minus_offset(p, prevsize);
4189 psize += prevsize;
4190 p = prev;
4191 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4192 if (p != fm->dv) {
4193 unlink_chunk(fm, p, prevsize);
4194 }
4195 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4196 fm->dvsize = psize;
4197 set_free_with_pinuse(p, psize, next);
4198 goto postaction;
4199 }
4200 }
4201 else
4202 goto erroraction;
4203 }
4204 }
4205
4206 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4207 if (!cinuse(next)) { /* consolidate forward */
4208 if (next == fm->top) {
4209 size_t tsize = fm->topsize += psize;
4210 fm->top = p;
4211 p->head = tsize | PINUSE_BIT;
4212 if (p == fm->dv) {
4213 fm->dv = 0;
4214 fm->dvsize = 0;
4215 }
4216 if (should_trim(fm, tsize))
4217 sys_trim(fm, 0);
4218 goto postaction;
4219 }
4220 else if (next == fm->dv) {
4221 size_t dsize = fm->dvsize += psize;
4222 fm->dv = p;
4223 set_size_and_pinuse_of_free_chunk(p, dsize);
4224 goto postaction;
4225 }
4226 else {
4227 size_t nsize = chunksize(next);
4228 psize += nsize;
4229 unlink_chunk(fm, next, nsize);
4230 set_size_and_pinuse_of_free_chunk(p, psize);
4231 if (p == fm->dv) {
4232 fm->dvsize = psize;
4233 goto postaction;
4234 }
4235 }
4236 }
4237 else
4238 set_free_with_pinuse(p, psize, next);
4239 insert_chunk(fm, p, psize);
4240 check_free_chunk(fm, p);
4241 goto postaction;
4242 }
4243 }
4244 erroraction:
4245 USAGE_ERROR_ACTION(fm, p);
4246 postaction:
4247 POSTACTION(fm);
4248 }
4249 }
4250#if !FOOTERS
4251#undef fm
4252#endif /* FOOTERS */
4253}
4254
4255void* dlcalloc(size_t n_elements, size_t elem_size) {
4256 void* mem;
4257 size_t req = 0;
4258 if (n_elements != 0) {
4259 req = n_elements * elem_size;
4260 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4261 (req / n_elements != elem_size))
4262 req = MAX_SIZE_T; /* force downstream failure on overflow */
4263 }
4264 mem = dlmalloc(req);
4265 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4266 memset(mem, 0, req);
4267 return mem;
4268}
4269
4270void* dlrealloc(void* oldmem, size_t bytes) {
4271 if (oldmem == 0)
4272 return dlmalloc(bytes);
4273#ifdef REALLOC_ZERO_BYTES_FREES
4274 if (bytes == 0) {
4275 dlfree(oldmem);
4276 return 0;
4277 }
4278#endif /* REALLOC_ZERO_BYTES_FREES */
4279 else {
4280#if ! FOOTERS
4281 mstate m = gm;
4282#else /* FOOTERS */
4283 mstate m = get_mstate_for(mem2chunk(oldmem));
4284 if (!ok_magic(m)) {
4285 USAGE_ERROR_ACTION(m, oldmem);
4286 return 0;
4287 }
4288#endif /* FOOTERS */
4289 return internal_realloc(m, oldmem, bytes);
4290 }
4291}
4292
4293void* dlmemalign(size_t alignment, size_t bytes) {
4294 return internal_memalign(gm, alignment, bytes);
4295}
4296
4297void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4298 void* chunks[]) {
4299 size_t sz = elem_size; /* serves as 1-element array */
4300 return ialloc(gm, n_elements, &sz, 3, chunks);
4301}
4302
4303void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4304 void* chunks[]) {
4305 return ialloc(gm, n_elements, sizes, 0, chunks);
4306}
4307
4308void* dlvalloc(size_t bytes) {
4309 size_t pagesz;
4310 init_mparams();
4311 pagesz = mparams.page_size;
4312 return dlmemalign(pagesz, bytes);
4313}
4314
4315void* dlpvalloc(size_t bytes) {
4316 size_t pagesz;
4317 init_mparams();
4318 pagesz = mparams.page_size;
4319 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4320}
4321
4322int dlmalloc_trim(size_t pad) {
4323 int result = 0;
4324 if (!PREACTION(gm)) {
4325 result = sys_trim(gm, pad);
4326 POSTACTION(gm);
4327 }
4328 return result;
4329}
4330
4331size_t dlmalloc_footprint(void) {
4332 return gm->footprint;
4333}
4334
4335size_t dlmalloc_max_footprint(void) {
4336 return gm->max_footprint;
4337}
4338
4339#if !NO_MALLINFO
4340struct mallinfo dlmallinfo(void) {
4341 return internal_mallinfo(gm);
4342}
4343#endif /* NO_MALLINFO */
4344
4345void dlmalloc_stats() {
4346 internal_malloc_stats(gm);
4347}
4348
4349size_t dlmalloc_usable_size(void* mem) {
4350 if (mem != 0) {
4351 mchunkptr p = mem2chunk(mem);
4352 if (cinuse(p))
4353 return chunksize(p) - overhead_for(p);
4354 }
4355 return 0;
4356}
4357
4358int dlmallopt(int param_number, int value) {
4359 return change_mparam(param_number, value);
4360}
4361
4362#endif /* !ONLY_MSPACES */
4363
4364/* ----------------------------- user mspaces ---------------------------- */
4365
4366#if MSPACES
4367
4368static mstate init_user_mstate(char* tbase, size_t tsize) {
4369 size_t msize = pad_request(sizeof(struct malloc_state));
4370 mchunkptr mn;
4371 mchunkptr msp = align_as_chunk(tbase);
4372 mstate m = (mstate)(chunk2mem(msp));
4373 memset(m, 0, msize);
4374 INITIAL_LOCK(&m->mutex);
4375 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
4376 m->seg.base = m->least_addr = tbase;
4377 m->seg.size = m->footprint = m->max_footprint = tsize;
4378 m->magic = mparams.magic;
4379 m->mflags = mparams.default_mflags;
4380 disable_contiguous(m);
4381 init_bins(m);
4382 mn = next_chunk(mem2chunk(m));
4383 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
4384 check_top_chunk(m, m->top);
4385 return m;
4386}
4387
4388mspace create_mspace(size_t capacity, int locked) {
4389 mstate m = 0;
4390 size_t msize = pad_request(sizeof(struct malloc_state));
4391 init_mparams(); /* Ensure pagesize etc initialized */
4392
4393 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4394 size_t rs = ((capacity == 0)? mparams.granularity :
4395 (capacity + TOP_FOOT_SIZE + msize));
4396 size_t tsize = granularity_align(rs);
4397 char* tbase = (char*)(CALL_MMAP(tsize));
4398 if (tbase != CMFAIL) {
4399 m = init_user_mstate(tbase, tsize);
4400 m->seg.sflags = IS_MMAPPED_BIT;
4401 set_lock(m, locked);
4402 }
4403 }
4404 return (mspace)m;
4405}
4406
4407mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
4408 mstate m = 0;
4409 size_t msize = pad_request(sizeof(struct malloc_state));
4410 init_mparams(); /* Ensure pagesize etc initialized */
4411
4412 if (capacity > msize + TOP_FOOT_SIZE &&
4413 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4414 m = init_user_mstate((char*)base, capacity);
4415 m->seg.sflags = EXTERN_BIT;
4416 set_lock(m, locked);
4417 }
4418 return (mspace)m;
4419}
4420
4421size_t destroy_mspace(mspace msp) {
4422 size_t freed = 0;
4423 mstate ms = (mstate)msp;
4424 if (ok_magic(ms)) {
4425 msegmentptr sp = &ms->seg;
4426 while (sp != 0) {
4427 char* base = sp->base;
4428 size_t size = sp->size;
4429 flag_t flag = sp->sflags;
4430 sp = sp->next;
4431 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
4432 CALL_MUNMAP(base, size) == 0)
4433 freed += size;
4434 }
4435 }
4436 else {
4437 USAGE_ERROR_ACTION(ms,ms);
4438 }
4439 return freed;
4440}
4441
4442/*
4443 mspace versions of routines are near-clones of the global
4444 versions. This is not so nice but better than the alternatives.
4445*/
4446
4447
4448void* mspace_malloc(mspace msp, size_t bytes) {
4449 mstate ms = (mstate)msp;
4450 if (!ok_magic(ms)) {
4451 USAGE_ERROR_ACTION(ms,ms);
4452 return 0;
4453 }
4454 if (!PREACTION(ms)) {
4455 void* mem;
4456 size_t nb;
4457 if (bytes <= MAX_SMALL_REQUEST) {
4458 bindex_t idx;
4459 binmap_t smallbits;
4460 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4461 idx = small_index(nb);
4462 smallbits = ms->smallmap >> idx;
4463
4464 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4465 mchunkptr b, p;
4466 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4467 b = smallbin_at(ms, idx);
4468 p = b->fd;
4469 assert(chunksize(p) == small_index2size(idx));
4470 unlink_first_small_chunk(ms, b, p, idx);
4471 set_inuse_and_pinuse(ms, p, small_index2size(idx));
4472 mem = chunk2mem(p);
4473 check_malloced_chunk(ms, mem, nb);
4474 goto postaction;
4475 }
4476
4477 else if (nb > ms->dvsize) {
4478 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4479 mchunkptr b, p, r;
4480 size_t rsize;
4481 bindex_t i;
4482 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4483 binmap_t leastbit = least_bit(leftbits);
4484 compute_bit2idx(leastbit, i);
4485 b = smallbin_at(ms, i);
4486 p = b->fd;
4487 assert(chunksize(p) == small_index2size(i));
4488 unlink_first_small_chunk(ms, b, p, i);
4489 rsize = small_index2size(i) - nb;
4490 /* Fit here cannot be remainderless if 4byte sizes */
4491 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4492 set_inuse_and_pinuse(ms, p, small_index2size(i));
4493 else {
4494 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4495 r = chunk_plus_offset(p, nb);
4496 set_size_and_pinuse_of_free_chunk(r, rsize);
4497 replace_dv(ms, r, rsize);
4498 }
4499 mem = chunk2mem(p);
4500 check_malloced_chunk(ms, mem, nb);
4501 goto postaction;
4502 }
4503
4504 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
4505 check_malloced_chunk(ms, mem, nb);
4506 goto postaction;
4507 }
4508 }
4509 }
4510 else if (bytes >= MAX_REQUEST)
4511 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4512 else {
4513 nb = pad_request(bytes);
4514 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
4515 check_malloced_chunk(ms, mem, nb);
4516 goto postaction;
4517 }
4518 }
4519
4520 if (nb <= ms->dvsize) {
4521 size_t rsize = ms->dvsize - nb;
4522 mchunkptr p = ms->dv;
4523 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4524 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
4525 ms->dvsize = rsize;
4526 set_size_and_pinuse_of_free_chunk(r, rsize);
4527 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4528 }
4529 else { /* exhaust dv */
4530 size_t dvs = ms->dvsize;
4531 ms->dvsize = 0;
4532 ms->dv = 0;
4533 set_inuse_and_pinuse(ms, p, dvs);
4534 }
4535 mem = chunk2mem(p);
4536 check_malloced_chunk(ms, mem, nb);
4537 goto postaction;
4538 }
4539
4540 else if (nb < ms->topsize) { /* Split top */
4541 size_t rsize = ms->topsize -= nb;
4542 mchunkptr p = ms->top;
4543 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4544 r->head = rsize | PINUSE_BIT;
4545 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4546 mem = chunk2mem(p);
4547 check_top_chunk(ms, ms->top);
4548 check_malloced_chunk(ms, mem, nb);
4549 goto postaction;
4550 }
4551
4552 mem = sys_alloc(ms, nb);
4553
4554 postaction:
4555 POSTACTION(ms);
4556 return mem;
4557 }
4558
4559 return 0;
4560}
4561
4562void mspace_free(mspace msp, void* mem) {
4563 if (mem != 0) {
4564 mchunkptr p = mem2chunk(mem);
4565#if FOOTERS
4566 mstate fm = get_mstate_for(p);
4567#else /* FOOTERS */
4568 mstate fm = (mstate)msp;
4569#endif /* FOOTERS */
4570 if (!ok_magic(fm)) {
4571 USAGE_ERROR_ACTION(fm, p);
4572 return;
4573 }
4574 if (!PREACTION(fm)) {
4575 check_inuse_chunk(fm, p);
4576 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4577 size_t psize = chunksize(p);
4578 mchunkptr next = chunk_plus_offset(p, psize);
4579 if (!pinuse(p)) {
4580 size_t prevsize = p->prev_foot;
4581 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4582 prevsize &= ~IS_MMAPPED_BIT;
4583 psize += prevsize + MMAP_FOOT_PAD;
4584 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4585 fm->footprint -= psize;
4586 goto postaction;
4587 }
4588 else {
4589 mchunkptr prev = chunk_minus_offset(p, prevsize);
4590 psize += prevsize;
4591 p = prev;
4592 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4593 if (p != fm->dv) {
4594 unlink_chunk(fm, p, prevsize);
4595 }
4596 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4597 fm->dvsize = psize;
4598 set_free_with_pinuse(p, psize, next);
4599 goto postaction;
4600 }
4601 }
4602 else
4603 goto erroraction;
4604 }
4605 }
4606
4607 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4608 if (!cinuse(next)) { /* consolidate forward */
4609 if (next == fm->top) {
4610 size_t tsize = fm->topsize += psize;
4611 fm->top = p;
4612 p->head = tsize | PINUSE_BIT;
4613 if (p == fm->dv) {
4614 fm->dv = 0;
4615 fm->dvsize = 0;
4616 }
4617 if (should_trim(fm, tsize))
4618 sys_trim(fm, 0);
4619 goto postaction;
4620 }
4621 else if (next == fm->dv) {
4622 size_t dsize = fm->dvsize += psize;
4623 fm->dv = p;
4624 set_size_and_pinuse_of_free_chunk(p, dsize);
4625 goto postaction;
4626 }
4627 else {
4628 size_t nsize = chunksize(next);
4629 psize += nsize;
4630 unlink_chunk(fm, next, nsize);
4631 set_size_and_pinuse_of_free_chunk(p, psize);
4632 if (p == fm->dv) {
4633 fm->dvsize = psize;
4634 goto postaction;
4635 }
4636 }
4637 }
4638 else
4639 set_free_with_pinuse(p, psize, next);
4640 insert_chunk(fm, p, psize);
4641 check_free_chunk(fm, p);
4642 goto postaction;
4643 }
4644 }
4645 erroraction:
4646 USAGE_ERROR_ACTION(fm, p);
4647 postaction:
4648 POSTACTION(fm);
4649 }
4650 }
4651}
4652
4653void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4654 void* mem;
4655 size_t req = 0;
4656 mstate ms = (mstate)msp;
4657 if (!ok_magic(ms)) {
4658 USAGE_ERROR_ACTION(ms,ms);
4659 return 0;
4660 }
4661 if (n_elements != 0) {
4662 req = n_elements * elem_size;
4663 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4664 (req / n_elements != elem_size))
4665 req = MAX_SIZE_T; /* force downstream failure on overflow */
4666 }
4667 mem = internal_malloc(ms, req);
4668 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4669 memset(mem, 0, req);
4670 return mem;
4671}
4672
4673void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4674 if (oldmem == 0)
4675 return mspace_malloc(msp, bytes);
4676#ifdef REALLOC_ZERO_BYTES_FREES
4677 if (bytes == 0) {
4678 mspace_free(msp, oldmem);
4679 return 0;
4680 }
4681#endif /* REALLOC_ZERO_BYTES_FREES */
4682 else {
4683#if FOOTERS
4684 mchunkptr p = mem2chunk(oldmem);
4685 mstate ms = get_mstate_for(p);
4686#else /* FOOTERS */
4687 mstate ms = (mstate)msp;
4688#endif /* FOOTERS */
4689 if (!ok_magic(ms)) {
4690 USAGE_ERROR_ACTION(ms,ms);
4691 return 0;
4692 }
4693 return internal_realloc(ms, oldmem, bytes);
4694 }
4695}
4696
4697void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4698 mstate ms = (mstate)msp;
4699 if (!ok_magic(ms)) {
4700 USAGE_ERROR_ACTION(ms,ms);
4701 return 0;
4702 }
4703 return internal_memalign(ms, alignment, bytes);
4704}
4705
4706void** mspace_independent_calloc(mspace msp, size_t n_elements,
4707 size_t elem_size, void* chunks[]) {
4708 size_t sz = elem_size; /* serves as 1-element array */
4709 mstate ms = (mstate)msp;
4710 if (!ok_magic(ms)) {
4711 USAGE_ERROR_ACTION(ms,ms);
4712 return 0;
4713 }
4714 return ialloc(ms, n_elements, &sz, 3, chunks);
4715}
4716
4717void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4718 size_t sizes[], void* chunks[]) {
4719 mstate ms = (mstate)msp;
4720 if (!ok_magic(ms)) {
4721 USAGE_ERROR_ACTION(ms,ms);
4722 return 0;
4723 }
4724 return ialloc(ms, n_elements, sizes, 0, chunks);
4725}
4726
4727int mspace_trim(mspace msp, size_t pad) {
4728 int result = 0;
4729 mstate ms = (mstate)msp;
4730 if (ok_magic(ms)) {
4731 if (!PREACTION(ms)) {
4732 result = sys_trim(ms, pad);
4733 POSTACTION(ms);
4734 }
4735 }
4736 else {
4737 USAGE_ERROR_ACTION(ms,ms);
4738 }
4739 return result;
4740}
4741
4742void mspace_malloc_stats(mspace msp) {
4743 mstate ms = (mstate)msp;
4744 if (ok_magic(ms)) {
4745 internal_malloc_stats(ms);
4746 }
4747 else {
4748 USAGE_ERROR_ACTION(ms,ms);
4749 }
4750}
4751
4752size_t mspace_footprint(mspace msp) {
4753 size_t result;
4754 mstate ms = (mstate)msp;
4755 if (ok_magic(ms)) {
4756 result = ms->footprint;
4757 }
4758 USAGE_ERROR_ACTION(ms,ms);
4759 return result;
4760}
4761
4762
4763size_t mspace_max_footprint(mspace msp) {
4764 size_t result;
4765 mstate ms = (mstate)msp;
4766 if (ok_magic(ms)) {
4767 result = ms->max_footprint;
4768 }
4769 USAGE_ERROR_ACTION(ms,ms);
4770 return result;
4771}
4772
4773
4774#if !NO_MALLINFO
4775struct mallinfo mspace_mallinfo(mspace msp) {
4776 mstate ms = (mstate)msp;
4777 if (!ok_magic(ms)) {
4778 USAGE_ERROR_ACTION(ms,ms);
4779 }
4780 return internal_mallinfo(ms);
4781}
4782#endif /* NO_MALLINFO */
4783
4784int mspace_mallopt(int param_number, int value) {
4785 return change_mparam(param_number, value);
4786}
4787
4788#endif /* MSPACES */
4789
4790/* -------------------- Alternative MORECORE functions ------------------- */
4791
4792/*
4793 Guidelines for creating a custom version of MORECORE:
4794
4795 * For best performance, MORECORE should allocate in multiples of pagesize.
4796 * MORECORE may allocate more memory than requested. (Or even less,
4797 but this will usually result in a malloc failure.)
4798 * MORECORE must not allocate memory when given argument zero, but
4799 instead return one past the end address of memory from previous
4800 nonzero call.
4801 * For best performance, consecutive calls to MORECORE with positive
4802 arguments should return increasing addresses, indicating that
4803 space has been contiguously extended.
4804 * Even though consecutive calls to MORECORE need not return contiguous
4805 addresses, it must be OK for malloc'ed chunks to span multiple
4806 regions in those cases where they do happen to be contiguous.
4807 * MORECORE need not handle negative arguments -- it may instead
4808 just return MFAIL when given negative arguments.
4809 Negative arguments are always multiples of pagesize. MORECORE
4810 must not misinterpret negative args as large positive unsigned
4811 args. You can suppress all such calls from even occurring by defining
4812 MORECORE_CANNOT_TRIM,
4813
4814 As an example alternative MORECORE, here is a custom allocator
4815 kindly contributed for pre-OSX macOS. It uses virtually but not
4816 necessarily physically contiguous non-paged memory (locked in,
4817 present and won't get swapped out). You can use it by uncommenting
4818 this section, adding some #includes, and setting up the appropriate
4819 defines above:
4820
4821 #define MORECORE osMoreCore
4822
4823 There is also a shutdown routine that should somehow be called for
4824 cleanup upon program exit.
4825
4826 #define MAX_POOL_ENTRIES 100
4827 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4828 static int next_os_pool;
4829 void *our_os_pools[MAX_POOL_ENTRIES];
4830
4831 void *osMoreCore(int size)
4832 {
4833 void *ptr = 0;
4834 static void *sbrk_top = 0;
4835
4836 if (size > 0)
4837 {
4838 if (size < MINIMUM_MORECORE_SIZE)
4839 size = MINIMUM_MORECORE_SIZE;
4840 if (CurrentExecutionLevel() == kTaskLevel)
4841 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4842 if (ptr == 0)
4843 {
4844 return (void *) MFAIL;
4845 }
4846 // save ptrs so they can be freed during cleanup
4847 our_os_pools[next_os_pool] = ptr;
4848 next_os_pool++;
4849 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4850 sbrk_top = (char *) ptr + size;
4851 return ptr;
4852 }
4853 else if (size < 0)
4854 {
4855 // we don't currently support shrink behavior
4856 return (void *) MFAIL;
4857 }
4858 else
4859 {
4860 return sbrk_top;
4861 }
4862 }
4863
4864 // cleanup any allocated memory pools
4865 // called as last thing before shutting down driver
4866
4867 void osCleanupMem(void)
4868 {
4869 void **ptr;
4870
4871 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4872 if (*ptr)
4873 {
4874 PoolDeallocate(*ptr);
4875 *ptr = 0;
4876 }
4877 }
4878
4879*/
4880
4881
4882/* -----------------------------------------------------------------------
4883History:
4884 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4885 * Add max_footprint functions
4886 * Ensure all appropriate literals are size_t
4887 * Fix conditional compilation problem for some #define settings
4888 * Avoid concatenating segments with the one provided
4889 in create_mspace_with_base
4890 * Rename some variables to avoid compiler shadowing warnings
4891 * Use explicit lock initialization.
4892 * Better handling of sbrk interference.
4893 * Simplify and fix segment insertion, trimming and mspace_destroy
4894 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4895 * Thanks especially to Dennis Flanagan for help on these.
4896
4897 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4898 * Fix memalign brace error.
4899
4900 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4901 * Fix improper #endif nesting in C++
4902 * Add explicit casts needed for C++
4903
4904 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4905 * Use trees for large bins
4906 * Support mspaces
4907 * Use segments to unify sbrk-based and mmap-based system allocation,
4908 removing need for emulation on most platforms without sbrk.
4909 * Default safety checks
4910 * Optional footer checks. Thanks to William Robertson for the idea.
4911 * Internal code refactoring
4912 * Incorporate suggestions and platform-specific changes.
4913 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4914 Aaron Bachmann, Emery Berger, and others.
4915 * Speed up non-fastbin processing enough to remove fastbins.
4916 * Remove useless cfree() to avoid conflicts with other apps.
4917 * Remove internal memcpy, memset. Compilers handle builtins better.
4918 * Remove some options that no one ever used and rename others.
4919
4920 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4921 * Fix malloc_state bitmap array misdeclaration
4922
4923 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4924 * Allow tuning of FIRST_SORTED_BIN_SIZE
4925 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4926 * Better detection and support for non-contiguousness of MORECORE.
4927 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4928 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4929 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4930 * Raised default trim and map thresholds to 256K.
4931 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4932 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4933 * Branch-free bin calculation
4934 * Default trim and mmap thresholds now 256K.
4935
4936 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4937 * Introduce independent_comalloc and independent_calloc.
4938 Thanks to Michael Pachos for motivation and help.
4939 * Make optional .h file available
4940 * Allow > 2GB requests on 32bit systems.
4941 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4942 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4943 and Anonymous.
4944 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4945 helping test this.)
4946 * memalign: check alignment arg
4947 * realloc: don't try to shift chunks backwards, since this
4948 leads to more fragmentation in some programs and doesn't
4949 seem to help in any others.
4950 * Collect all cases in malloc requiring system memory into sysmalloc
4951 * Use mmap as backup to sbrk
4952 * Place all internal state in malloc_state
4953 * Introduce fastbins (although similar to 2.5.1)
4954 * Many minor tunings and cosmetic improvements
4955 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4956 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4957 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4958 * Include errno.h to support default failure action.
4959
4960 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4961 * return null for negative arguments
4962 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4963 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4964 (e.g. WIN32 platforms)
4965 * Cleanup header file inclusion for WIN32 platforms
4966 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4967 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4968 memory allocation routines
4969 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4970 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4971 usage of 'assert' in non-WIN32 code
4972 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4973 avoid infinite loop
4974 * Always call 'fREe()' rather than 'free()'
4975
4976 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4977 * Fixed ordering problem with boundary-stamping
4978
4979 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4980 * Added pvalloc, as recommended by H.J. Liu
4981 * Added 64bit pointer support mainly from Wolfram Gloger
4982 * Added anonymously donated WIN32 sbrk emulation
4983 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4984 * malloc_extend_top: fix mask error that caused wastage after
4985 foreign sbrks
4986 * Add linux mremap support code from HJ Liu
4987
4988 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4989 * Integrated most documentation with the code.
4990 * Add support for mmap, with help from
4991 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4992 * Use last_remainder in more cases.
4993 * Pack bins using idea from colin@nyx10.cs.du.edu
4994 * Use ordered bins instead of best-fit threshhold
4995 * Eliminate block-local decls to simplify tracing and debugging.
4996 * Support another case of realloc via move into top
4997 * Fix error occuring when initial sbrk_base not word-aligned.
4998 * Rely on page size for units instead of SBRK_UNIT to
4999 avoid surprises about sbrk alignment conventions.
5000 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5001 (raymond@es.ele.tue.nl) for the suggestion.
5002 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5003 * More precautions for cases where other routines call sbrk,
5004 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5005 * Added macros etc., allowing use in linux libc from
5006 H.J. Lu (hjl@gnu.ai.mit.edu)
5007 * Inverted this history list
5008
5009 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
5010 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5011 * Removed all preallocation code since under current scheme
5012 the work required to undo bad preallocations exceeds
5013 the work saved in good cases for most test programs.
5014 * No longer use return list or unconsolidated bins since
5015 no scheme using them consistently outperforms those that don't
5016 given above changes.
5017 * Use best fit for very large chunks to prevent some worst-cases.
5018 * Added some support for debugging
5019
5020 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
5021 * Removed footers when chunks are in use. Thanks to
5022 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5023
5024 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
5025 * Added malloc_trim, with help from Wolfram Gloger
5026 (wmglo@Dent.MED.Uni-Muenchen.DE).
5027
5028 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
5029
5030 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
5031 * realloc: try to expand in both directions
5032 * malloc: swap order of clean-bin strategy;
5033 * realloc: only conditionally expand backwards
5034 * Try not to scavenge used bins
5035 * Use bin counts as a guide to preallocation
5036 * Occasionally bin return list chunks in first scan
5037 * Add a few optimizations from colin@nyx10.cs.du.edu
5038
5039 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
5040 * faster bin computation & slightly different binning
5041 * merged all consolidations to one part of malloc proper
5042 (eliminating old malloc_find_space & malloc_clean_bin)
5043 * Scan 2 returns chunks (not just 1)
5044 * Propagate failure in realloc if malloc returns 0
5045 * Add stuff to allow compilation on non-ANSI compilers
5046 from kpv@research.att.com
5047
5048 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
5049 * removed potential for odd address access in prev_chunk
5050 * removed dependency on getpagesize.h
5051 * misc cosmetics and a bit more internal documentation
5052 * anticosmetics: mangled names in macros to evade debugger strangeness
5053 * tested on sparc, hp-700, dec-mips, rs6000
5054 with gcc & native cc (hp, dec only) allowing
5055 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5056
5057 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
5058 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5059 structure of old version, but most details differ.)
5060
5061*/
Note: See TracBrowser for help on using the repository browser.